https://doi.org/10.1038/s41598-021-82001-0 ·
Видання: Scientific Reports, 2021, №1
Видавець: Springer Science and Business Media LLC
Автори:
- B. P. Mallikarjuna Swamy
- Severino Marundan
- Mercy Samia
- Reynante L. Ordonio
- Democrito B. Rebong
- Ronalyn Miranda
- Anielyn Alibuyog
- Anna Theresa Rebong
- Ma. Angela Tabil
- Roel R. Suralta
- Antonio A. Alfonso
- Partha Sarathi Biswas
- Md. Abdul Kader
- Russell F. Reinke
- Raul Boncodin
- Donald J. MacKenzie
Анотація
AbstractGolden Rice with β-carotene in the grain helps to address the problem of vitamin A deficiency. Prior to commercialize Golden Rice, several performance and regulatory checkpoints must be achieved. We report results of marker assisted backcross breeding of the GR2E trait into three popular rice varieties followed by a series of confined field tests of event GR2E introgression lines to assess their agronomic performance and carotenoid expression. Results from confined tests in the Philippines and Bangladesh have shown that GR2E introgression lines matched the performance of the recurrent parents for agronomic and yield performance, and the key components of grain quality. Moreover, no differences were observed in terms of pest and disease reaction. The best performing lines identified in each genetic background had significant amounts of carotenoids in the milled grains. These lines can supply 30–50% of the estimated average requirements of vitamin A.
Джерела фінансування
- Bill and Melinda Gates Foundation
- United States Agency for International Development
Список літератури
- Muthayya, S., Sugimoto, J. D., Montgomery, S. & Maberly, G. F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 1324, 7–14 (2014).
https://doi.org/10.1111/nyas.12540 - Kennedy, E. Healthy lifestyles, healthy people-the mega country health promotion network. Asian Pac. J. Clin. Nutr. 11, S738–S739 (2003).
https://doi.org/10.1046/j.1440-6047.11.s8.17.x - Alavi, S. et al. Rice fortification in developing countries: A critical review of the technical and economic feasibility (A2Z Project/Academy for Educational Development, Washington DC, 2008).
- Bouis, H. E. & Welch, R. M. Biofortification-A sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci. 50, 20–32 (2010).
https://doi.org/10.2135/cropsci2009.09.0531 - Bates, C. V. Vitamin A. Lancet 345, 31–35 (1995).
https://doi.org/10.1016/S0140-6736(95)91157-X - De Pee, S. Proposing nutrients and nutrient levels for rice fortification. Ann. N. Y. Acad. Sci. 1324, 55–66 (2014).
https://doi.org/10.1111/nyas.12478 - WHO. Global Prevalence of Vitamin A Deficiency in Populations at Risk 1995–2005. WHO Global Database on Vitamin A Deficiency (World Health Organization, Geneva, 2009).
- FNRI. Vitamin A deficiency (VAD) among Filipino preschool children, pregnant, and lactating women: 1993–2013. In 42nd FNRI Seminar Series, First 100 Days, 1–12, Los Banos (2016).
- ICDDRB. National micronutrients status survey 2011–2012. Technical report January. Centre for Nutrition and Food Security, icddr,b; UNICEF; GAIN; IPHN, Dhaka (2013).
- La Frano, M. R., Woodhouse, L. R., Burnett, D. J. & Burri, B. J. Biofortified cassava increases β-carotene and vitamin A concentrations in the TAG-rich plasma layer of American women. Br. J. Nutr. 110, 310–320 (2013).
https://doi.org/10.1017/S0007114512005004 - De Moura, F. F. et al. Are biofortified staple food crops improving vitamin A and iron status in women and children? New evidence from efficacy trials. Adv. Nutr. 5, 568–570 (2014).
https://doi.org/10.3945/an.114.006627 - Ye, X. et al. Engineering the provitamin A (β-Carotene) biosynthetic pathway into (carotenoids free) rice endosperm. Science 287, 303–305 (2000).
https://doi.org/10.1126/science.287.5451.303 - Paine, J. A. et al. Improving the nutritional value of golden rice through increased provitamin A content. Nat. Biotechnol. 23, 482–487 (2005).
https://doi.org/10.1038/nbt1082 - Das, G. & Rao, G. J. N. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front. Plant Sci. https://doi.org/10.3389/fpls.2015.00698 (2015).
https://doi.org/10.3389/fpls.2015.00698 - Septiningsih, E. M. et al. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann. Bot. 103, 151–160 (2009).
https://doi.org/10.1093/aob/mcn206 - Swamy, B. P. M. et al. Genetic, physiological, and gene expression analyses reveal multiple QTLs that enhance yield of rice mega-variety IR64 under drought. PLoS ONE 8, e62795 (2013).
https://doi.org/10.1371/journal.pone.0062795 - Sivakumar, B. Current controversies in carotene nutrition. Ind. J. Med. Res 108, 157–166 (1998).
- Sommers, A. New imperatives for an old vitamin (A). J. Nutr. 119, 96–100 (1988).
https://doi.org/10.1093/jn/119.1.96 - Gillespie, S. & Haddad, L. Attacking the double burden of malnutrition in Asia and the Pacific. ADB Nutrition and Development Series 4 (2001).
- Yin, Z., Plader, W. & Malepszy, S. Transgenic inheritance in plants. J. Appl. Genet. 45, 127–144 (2004).
- Trijatmiko, K. R. et al. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci. Rep. 6, 19792 (2016).
https://doi.org/10.1038/srep19792 - Bollinedi, H. S. et al. Molecular and functional characterization of GR2-R1 event based backcross derived lines of Golden Rice in the genetic background of a mega rice variety Swarna. PLoS ONE 12, e0169600 (2017).
https://doi.org/10.1371/journal.pone.0169600 - Woodfield, D. R. & White, D. W. R. Breeding strategies for developing transgenic white clover cultivars. Agron. Soc. 11, 125–130 (1996).
- Badenhorst, P. E., Smith, K. F. & Spangenberg, G. Development of a molecular breeding strategy for the integration of transgenic traits in outcrossing perennial grasses. Agronomy 6, 56 (2016).
https://doi.org/10.3390/agronomy6040056 - Collard, B. C. Y. & Mackill, D. J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 363, 557–572 (2008).
https://doi.org/10.1098/rstb.2007.2170 - Hasan, M. M. et al. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol. Biotechnol. Equip. 29, 237–254 (2015).
https://doi.org/10.1080/13102818.2014.995920 - Codex. Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants CAC/GL 45-2003 (2003).
- Jiao, Z., Si, X. X., Li, G. K., Zhang, Z. M. & Xu, X. P. Unintended compositional changes in transgenic rice seeds (Oryzasativa L.) studied by spectral and chromatographic analysis coupled with chemometrics methods. J. Agric. Food Chem. 58, 1746–1754 (2010).
https://doi.org/10.1021/jf902676y - Swamy, B. P. M. et al. Compositional analysis of genetically engineered GR2E “Golden Rice” compared to conventional rice. J. Agric. Food Chem. 67, 7986–7994 (2019).
https://doi.org/10.1021/acs.jafc.9b01524 - Herman, R. A. & Price, W. D. Unintended compositional changes in genetically modified (GM) crops: 20 years of research. J. Agric. Food Chem. 61, 11695–70110 (2013).
https://doi.org/10.1021/jf400135r - Harrigan, G. G. et al. Impact of genetics and environment on nutritional and metabolite components of maize grain. J. Agric. Food Chem. 55, 6177–6185 (2007).
https://doi.org/10.1021/jf070494k - Ricroch, A. E. Assessment of GE food safety using ‘-omics’ techniques and long-term animal feeding studies. New Biotechnol. 30, 349–354 (2013).
https://doi.org/10.1016/j.nbt.2012.12.001 - Bishaw, Z. & van Gastel, A. J. G. Variety release and policy options. In Plant Breeding and Farmer Participation (eds Ceccarelli, S. et al.) (FAO, Rome, 2009).
- Inabangan-Asilo, M. A. et al. Stability and G × E analysis of zinc-biofortified rice genotypes evaluated in diverse environments. Euphytica 215, 61 (2019).
https://doi.org/10.1007/s10681-019-2384-7 - Datta, S. K. et al. Golden rice: Introgression, breeding, and field evaluation. Euphytica 154, 271–278 (2007).
https://doi.org/10.1007/s10681-006-9311-4 - Baisakh, N. et al. Marker-free transgenic MFT near-isogenic introgression lines NIILs of ‘golden’ indica rice cv IR64 with accumulation of provitamin A in the endosperm tissue. Plant Biotechnol. J. 4, 467–475 (2006).
https://doi.org/10.1111/j.1467-7652.2006.00196.x - Datta, K., Sahoo, G., Krishnan, S., Ganguly, M. & Datta, S. K. Genetic stability developed for β-carotene synthesis in BR29 rice line using dihaploid homozygosity. PLoS ONE 9, e100212 (2014).
https://doi.org/10.1371/journal.pone.0100212 - Tian, Y. S. et al. Enhancing carotenoid biosynthesis in rice endosperm by metabolic engineering. Plant Biotechnol. J. 17, 849 (2019).
https://doi.org/10.1111/pbi.13059 - Bai, C. et al. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor–product balance. Plant Biotechnol. J. 14, 195–205 (2016).
https://doi.org/10.1111/pbi.12373 - Xie, X. W. et al. Genetic background and environmental effects on QTLs for sheath blight resistance revealed by reciprocal introgression lines in rice. Acta Agron. Sin. 34, 1885–1893 (2008).
https://doi.org/10.1016/S1875-2780(09)60013-4 - Wang, X. et al. Genetic background effects on QTL and QTL × environment interaction for yield and its component traits as revealed by reciprocal introgression lines in rice. Crop J. 2, 345–357 (2014).
https://doi.org/10.1016/j.cj.2014.06.004 - Jaswir, I. et al. Effects of season and storage period on accumulation of individual carotenoids in pumpkin flesh (Cucurbita moschata). J. Oleo Sci. 63, 761–767 (2014).
https://doi.org/10.5650/jos.ess13186 - Horváth, G., Kissimon, J. & Faludi-Dániel, Á. Effect of light intensity on the formation of carotenoids in normal and mutant maize leaves. Phytochemistry 11, 183–187 (1972).
https://doi.org/10.1016/S0031-9422(00)89987-2 - Ben-Amotz, A. & Avron, M. On the factors which determine massive beta-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol. 72, 593–597 (1983).
https://doi.org/10.1104/pp.72.3.593 - Fuentes, P. et al. Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol. Biol. 79, 47–59 (2012).
https://doi.org/10.1007/s11103-012-9893-2 - Norshazila, S., Othman, R., Jaswir, I. & Yumi Zuhanis, H. H. Effect of abiotic stress on carotenoids accumulation in pumpkin plants under light and dark conditions. Int. Food Res. J. 24, S387–S394 (2017).
- Bechoff, A. et al. Effect of drying and storage on the degradation of total carotenoids in orange-fleshed sweet potato cultivars. J. Sci. Food Agric. 90, 622–629 (2010).
https://doi.org/10.1002/jsfa.3859 - Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4326 (1980).
https://doi.org/10.1093/nar/8.19.4321 - Juliano, B. Physicochemical Properties of Starch and Protein in Relation to Grain Quality and Nutritional Value of Rice 389–405 (International Rice Research Institute. Rice Breeding, Los Baños, 1972).
- Gemmecker, S. et al. Phytoene Desaturase from Oryza sativa: Oligomeric assembly, membrane association and preliminary 3D-analysis. PLoS ONE 10, e0131717 (2015).
https://doi.org/10.1371/journal.pone.0131717 - R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2012).
- IRRI 2014. Plant Breeding Tools (PB Tools), Version: 1.4, International Rice Research Institute, Los Banos.
- Lenth, R. lsmeans: Least-squares means. R package version 1.06-05. R Core Team (2015). R: A language and environment for statistical computing. Technical report (R Foundation for Statistical Computing, Vienna).
Публікації, які цитують цю публікацію
Developing Germplasm and Promoting Consumption of Anthocyanin-Rich Grains for Health Benefits
Sangam L. Dwivedi, Autar K. Mattoo, Monika Garg, Som Dutt, Brajesh Singh, Rodomiro Ortiz
https://doi.org/10.3389/fsufs.2022.867897 ·
2022, Frontiers in Sustainable Food Systems
Scopus
WoS
Цитувань Crossref:0
Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content
Nur Atikah Mohidem, Norhashila Hashim, Rosnah Shamsudin, Hasfalina Che Man
https://doi.org/10.3390/agriculture12060741 ·
2022, Agriculture, №6, с.741
Scopus
WoS
Цитувань Crossref:83
Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World
Mohd Fadhli Hamdan, Siti Nurfadhlina Mohd Noor, Nazrin Abd-Aziz, Teen-Lee Pua, Boon Chin Tan
https://doi.org/10.3390/plants11101297 ·
2022, Plants, №10, с.1297
Scopus
WoS
Цитувань Crossref:18
A Prospective Review on Selectable Marker-Free Genome Engineered Rice: Past, Present and Future Scientific Realm
Rajveer Singh, Navneet Kaur, Umesh Preethi Praba, Gurwinder Kaur, Mohammad Jafar Tanin, Pankaj Kumar, Kumari Neelam, Jagdeep Singh Sandhu, Yogesh Vikal
https://doi.org/10.3389/fgene.2022.882836 ·
2022, Frontiers in Genetics
Scopus
WoS
Цитувань Crossref:0
Sustainable Agro-Food Systems for Addressing Climate Change and Food Security
Akila Wijerathna-Yapa, Ranjith Pathirana
https://doi.org/10.3390/agriculture12101554 ·
2022, Agriculture, №10, с.1554
Scopus
WoS
Цитувань Crossref:57
Integrated Metabolomic and Transcriptomic Analyses Reveal the Basis for Carotenoid Biosynthesis in Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots
Qingming Ren, Xiaoxi Zhen, Huiyu Gao, Yinpei Liang, Hongying Li, Juan Zhao, Meiqiang Yin, Yuanhuai Han, Bin Zhang
https://doi.org/10.3390/metabo12111010 ·
2022, Metabolites, №11, с.1010
Scopus
WoS
Цитувань Crossref:3
Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots
Sangam L. Dwivedi, Ana Luísa Garcia-Oliveira, Mahalingam Govindaraj, Rodomiro Ortiz
https://doi.org/10.3389/fpls.2023.1119148 ·
2023, Frontiers in Plant Science
Scopus
WoS
Цитувань Crossref:0
Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance
Naveen Puppala, Spurthi N. Nayak, Alvaro Sanz-Saez, Charles Chen, Mura Jyostna Devi, Nivedita Nivedita, Yin Bao, Guohao He, Sy M. Traore, David A. Wright, Manish K. Pandey, Vinay Sharma
https://doi.org/10.3389/fgene.2023.1121462 ·
2023, Frontiers in Genetics
Scopus
WoS
Цитувань Crossref:0
Molecular dissection of connected rice populations revealed important genomic regions for agronomic and biofortification traits
Alvin D. Palanog, Chau Thanh Nha, Gwen Iris L. Descalsota-Empleo, Mark Ian Calayugan, Zin Mar Swe, Amery Amparado, Mary Ann Inabangan-Asilo, Jose E. Hernandez, Pompe C. Sta. Cruz, Teresita H. Borromeo, Antonio G. Lalusin, Ramil Mauleon, Kenneth L. McNally, B. P. Mallikarjuna Swamy
https://doi.org/10.3389/fpls.2023.1157507 ·
2023, Frontiers in Plant Science
Scopus
WoS
Цитувань Crossref:0
Advances in the development of rice varieties with better nutritional quality in Indonesia
Trias Sitaresmi, Aris Hairmansis, Yuni Widyastuti, Rachmawati, Untung Susanto, Bayu Pramono Wibowo, Mira Landep Widiastuti, Indrastuti Apri Rumanti, Willy Bayuardi Suwarno, Yudhistira Nugraha
https://doi.org/10.1016/j.jafr.2023.100602 ·
2023, Journal of Agriculture and Food Research, с.100602
Scopus
WoS
Цитувань Crossref:0
Знайти всі цитування публікації