Photovoltaic Solar Parking System Study, Analysis and Implementation for Bahrain Polytechnic - PDFCOFFEE.COM (2025)

Page1of202

12/28 8/2015

Fina al Repo ort

PHO OTOVOLT TAIC SOLAR O PARKING S YSTEM M STUDY, ANA ALYSIS A AND IMP PLEMENTATION N FOR BAHRAIN A POLYTEC CHNIC

Done B By: Yahya Isa Saif [ID: 2010010 047 [CPR R: 920705804] Supervi sor: DR. C Christina Georrgantopoulou

BachelorofEnggineeringT Technologgy|Co‐op perativeLe earningPrroject(ENB B7903) PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2of202

Abstracct: The generation of electricitty from solaar energy is a promising g alternativee to fossil fu uel‐based ment propose es a methodd for utilizing solar enerrgy through designing a a parking energy. This docum structurewithasolaarsystem(photovoltaic))forBahrainPolytechniccstudentspaarkingarea((P2).This nctions including shadingg the vehicle es and producing electrricity. This document system has two fun withexaminin ngthepoten ntialofsolar energyinBaahraininord dertochoossealltheapp propriate startsw elementtsforasolarrparkingstructure.Thenn,itchoosessthemostsu uitablesolar rcell,PVmoduleand systemfforBahrainP Polytechnica afteranalyzi ngselectioncriteria.Also o,itdetermiinestheoptiimumtilt anglean ndazimuthaangleforthe systemthrooughstudyin ngthemotionoftheeartthrelativeto othesun and locaation of Bah hrain. Then, it preparess 4 design options o for the t structurre and it selects the optimum m design th hat delivers best comp romise for design consstraints andd power gen neration. Furtherm more,itcalculatesthesttressesonthhepartsofth hestructureusingmechaanicsandFE EA,andit showsaa3dmodelfforthesyste em.Finally,ittcalculates thepowerp producedbyythesystem,defines theamo ount ofelecttricity consumedbyBahhrainPolytecchnicandcalculatesthe requiredbu udgetfor the projject. The selected solar system for tthis project is Grid tied battery less . The Canadian solar moduless (CS6V‐225 5M) and Enp phase M2155 micro inverters were e selected foor this project. The amount of solar irradiance that would be collected an nnually by east e side PV V modules (tilt 5°and westsidePV Vmodules(ttilt11°andazzimuth238.3 3°)is2,147aand2,183(K KWh/m ) azimuth58.3°)andw hisprojectiss1.4million BD(25years)anditwilllproduce48 8GWhof respectively.Thetottalcostofth ofelectricity producedussingthesolarparkingsysstemis0.029BDper electricitty(25years)).Thecosto KWh. The solar po otentials of Bahrain maake (PV) syystems an ideal alternaative for ge enerating electricitty. The pricee of solar en nergy is lesss than the price of electtricity that pproduced using fossil fuel.Imp plementingtthisproject wouldreducceCO2emissionsby40metrictons (25years).T Thesolar parking projects can be implem mented in aa large numb ber of differrent locationns such as shopping s buildingsparrking. centersparkingandresidentialb

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page3of202

Acknow wledgmentss: The successful completion n of this pproject wou uld not havve been poossible with hout the utionsofseveralpeople.Firstandforremost,Iwo ouldliketoexpressgratittudetoourffinalyear contribu projectssupervisorD Dr.ChristinaG Georgantopooulouforhe erguidancea andhelp.SpeecialthanksgotoDr. Subramaanian Chithaambaram for his help inn analyzing the forces, Mr. M John Donnald for allowing me workingg in the wo orkshop duriing mid sem mester holid day and Mrr. Hussain A Alhamar (Bu uilding & Mainten nance Manager at Bahrain polytechhnic) for giving me copyy of Bahrainn Polytechnic map. I wouldaalsoliketoth hankMr.EdgardoLevitaa(Salessupp portEnginee erinAl‐Zamiilsteelcomp pany)for preparin ng a quotation for the parking strructure, Mr.. AliKutty (ssenior sale eexcusive at Al‐Nooh Compan ny“Wahran Branch”)forrgivingme priceofstee elsections andMr.ChanndrasekharU Ukkarath (salesco oordinatorattAl‐FozanBuildingmateerials)forgivvingmeprice eofsteelsecctions.Iwouldliketo express gratitude to Electriciity and Waater Authorrity (EWA) Meters Reeadings Dep partment (represeentedbyMr..MohamedA Abdelnaby,M Mr.YusufMohamed,Mrr.AliAlamanndMr.FahadAliand specialtthankstoMr.Abdulaziz Fasil“previ ousenginee eringstudentt”)forgivinggmecopy ofmeters o readingssofBahrain Polytechnic campus. Alsso,Iwishto expressmy sincerethannkstoalltuttorswho helpedm meincomplletingmyen ngineeringdeegree. Finallyy,Iwouldlikketothankm myfamily,e especially Mom an nd Dad, for the continu uous supporrt they have e given me throughout my time att Bahrain Polytech hnic.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4of202

ExecutiveSummarry: 

Desccriptionand dthemainfe eaturesofthheproject: Themainaimoffthisprojectistoproposseamethodforutilizingsolarenergyythroughdesigninga V”) for Bahra ain Polytechhnic studentss parking parking structure with a solar system (phottovoltaic “PV area(themiddleareea).Thissysttemhastwoofunctionsincludingsha adingtheve hiclesandproducing electricitty.Thedesiggnedsystemcanbeuseddforsolvinggthepowercconsumptionnwithitiseffectson humanh healthandeenvironmentt,findingassolutionforllackoflandssissuesinBaahrainanda achieving thesustainability. Thissdocumentcconsistsofffourchapterrs.Thefirstcchapterisan nintroductioon;itconsisttsoffive sectionss. The first section in this t chapterr presents brief b informa ation regardding the rise e of use renewab ble energy (PV) ( worldwide, the devvelopment of o renewable e energy in Bahrain and d project purposee.Thesecond dsectionisliteraturerevview;itstartswiththehiistoryofreneewableenerrgy.Then itpresen nts,thetech hnologiesusedtosuppoortapplicatio onsinthepa arkingindusttry,thecurrentsolar parkingprojectsimp plementedin nKSAandBaahrain,thefaactorsthatsh houldbeconnsideredtom maximize gnconstrainnts(featuresrequired thepoteentialofthesun(supporrtedbyasetofresearches)anddesig bythecclient).Theth hirdsectionshowsthepprojectaimsandobjectivves.ThefourrthsectionissBahrain prospective;itexplaainshowthe eprojectcannservethen needsofBah hrainandshoowstheimp pactsand oject for the e Bahraini soociety. The last l section is a summaary of the re emaining benefitss of this pro chapterss. The secon nd chapter is theoretica l methodolo ogy, analysiss and designn. This chaptter starts withexp plainingallth herequiredsstepstodesiignasolarpaarkingsystem m(methodoology).Also,itdefines the funcctions, typess, componen nts and seleection criteriia for PV cells and PV ssolar system ms, and it shows the selection n criteria for module typpe. Then, it analyzes a all the methoddology steps in detail starting withrequireedparamete ersandtheooreticalaspe ectstodesign nthesystem m,movingto oparking structure analysis and a design and a ending aat system performance p analysis (ellectricity pro oduction, costs an nd savings). The third ch hapter is ressults and disscussion; it presents p all the calculattions and analysis usedtodessignthesolarrparkingsysstemforBah hrainPolytechnic.Itusesdecisionma atricesto hetypeofso olarcell,solarsystema ndsolarmo odule.Also,itselectstheefinaldesign nforthe selectth parking structure frrom set of options. o Furtthermore, it calculates the t stresses on the partts of the modelforthefinaldesiggn.Also,itcalculates structureusingmechanicsandFFEA,anditppresents3dm e proposed ssolar system m, it compares between electricity produced p the elecctricity generrated by the with eleectricity conssumed by Bahrain Polyttechnic and it estimatess the projectt costs for 25 2 years. Finally,iitpresentstheprojectim mpactsinterrmsofcosts(savings)an ndenvironm entalaspecttsforthe first25yyears.Thefo ourthchapte erisconclusioonsandreco ommendatio ons;itshowsallthemain nfindings ofthisp projectwithsseveralrecom mmendationnstoimprove etheprojecttinthefuturre.  Theprojectprob blem,purpo oseandappliications: piteof,Bahrrainhassomeofthehighhestsolarpo otentialinth heworld;theeuseofsola arenergy Insp in Bahraain is still relatively r low w. The rapidd growth in n population n and econoomic led Ba ahrain to experien nceaveryhighannualin ncreaseontthedemand ofelectricityywhichrequuiresburninggfurther fossilfuelandhencee,pollutingttheenvironm mentmore. ThisprojectwasselecteedtohelpBahrainin utilizing existingparrkingareasto ogenerateffurtherelectricity.Also,ttoreduceem missionsprod ducedby burning fossil fuel (especially CO2) C througgh finding cost effective e alternativees (PV) and utilizing Bahrain solar poten ntials. Furthe ermore, to ssupport Bahrain econom my in which reducing th he use of fossilfuelswouldalllowaddition nalexportsoofoilandgaaswhichism morevaluabbleonworld markets ogiveaprop posal(afull study)forB BahrainPolyttechnicinorrdertoinstallasolar thanBahrainandto

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page5of202 system inside the campus. c The e solar parkking system can help in n achieving sustainable building nted in a la rge numberr of differen nt locations such as, co ompanies designs, and can be implemen parking,universitiessparking,residentialbuiildingsparking,hotelspa arking,shopppingcenterssparking andopeenareaslikestreetsparking,sportceentersparking,parksparkking,etc.  Projjectobjectivves: The objectives of this pro oject are to study the potential of o solar eneergy in Bahrrain, the mpactsofim mplementing thisprojectinterms developmentofrenewableenerrgyinBahraiinandtheim of sustaainability and cost for Bahraini socciety, to dessign a solar parking sysstem inside Bahrain Polytech hnic campuss for the stu udents parkinng area usin ng photovolttaic solar paanels, to ana alyze the typesoffsolarsystem mswiththerequiredcom mponentsfo oreachsyste emandtoseelecttheapp propriate compon nents for thee selected system, s to ddefine the re equired para ameters for r designing the t solar panelsaandtodeterm minethebestdirectionaandorientattionofthepanelswiththheparkingstructure, todesigntheparkin ngstructureusingmechaanicsandFEA A,topreparea3dmodeelfortheenttiresolar system using SolidW Works software, to find the amountt of electriciity producedd by the sysstem and comparee it with thee actual elecctricity consuumed by Bah hrain Polytecchnic, to preepare a costt analysis reportfo orthesystem mandfinallyytoevaluatethebenefitssofimpleme entingthisprrojectfor25years.  Mainfindingsan ndconclusio ons: Bahrain the photovoltaic arrays shoould be placed toward south (Azim muth 180°) because In B Bahrain islocatedin ntheNorthe ernhemispheere(forfixed dstructure).Theefficienncyofasolarrmodule mtruesouthdecreasesb y1.1%fore everyfivedegreesawayffromtrueso outh.The mountedawayfrom optimum mtilt anglefforsolarmo odulesforBaahrainis26°°(forautme enandspringg),11°(forssummer) and41° (forwinter)).Themanuffacturersof solarparkingsystemsusesmalltilt angle(betw ween0to 10degreees)duetolloadsandstructureheigghtconstrain ns.InBahrain n,theallowaableminimumheight of the p parking struccture from the ground i s 2.2 m. The e selected tyype of struccture is doub ble slope structure.Theselecctedtiltand azimuthangglesforwesttsideparks are11°andd238.3°resp pectively, andthe tiltandazim muthanglesfforeastside parksare5°°and58.3°rrespectively.Thefinalde esignwas selected d based on client consstrains (aestthetic, cove ering entire park, safetty, etc.) and d power production. Accordiing to PVIS online calc ulator; the amount of solar irradiaance that would w be collected dannuallybyeastandw westsidepar ksis2,147.18and2,183.45(KWh/m^^2)respectivvely. For BahrainPolyytechnicsola arparkingp rojectthese electedsolarrcelltype,ssystemandsstructure batterylessssystemand fixedstructu urerespectivvely.Monocrrystalline are,monocrystallinee,Gridtiedb he highest efficiency, durable an nd available in the m market comp pared to solar ceells have th polycrysstalline and thin t films. By B installing Grid tied system Bahrain Polytechn ic can sell electricity e during h holidays; this would solvve part of B Bahrain pow wer consump ption issues. While seleccting the solar m module 10 faactors should be consi dered which they are, the modulle efficiencyy, power mperature, wind load, quality, tolerancce, temperaature coefficcient, nomiinal operating cell tem durabilitty,performaancewarrantty,productw warrantyand dinitialcostt.CanadianssolarCompanyisthe third beest solar mo odules manufacturer inn the world (in 2014), and it is oone of the cheapest c companies in the global g solar market; thhe Canadian module model Quarteech CS6V‐22 25M was dforthispro oject.Thismo odulewasseelectedduetoseveralre easonsespeccially,cost,d durability selected anditis compatiblewiththeparrksdimensioons.Enphase eM215micro oinvertersw wereselectedforthis mpatiblewithhtheselecte edCanadianmoduleanddhaveself‐grounding project; theseinverttersarecom system.Thenumberrofsolarmo odulesandm microinvertersthatwouldbeusedinthisprojectis6,372; thetotalareaofthesolarmodulesis8621.224 m .

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6of202 The parking stru ucture consiists of colum mns, crossbe eams, purlins and solar arrays (main parts). ossbeamineeachparkwillbecarried byoneverticalcolumn; thisdesign providesmo orespace Eachcro for the cars. The steeel purlins were w used foor mounting the module e in the desiired location n and for BasedonASCCE(American nSociety keeping aproperdisstancebetweenthemoddulesandcrossbeams.B es)would ofCivil Engineers)standardthesolarparkinngstructure (asolararrayconsistsoof9module K of wind lo oad during ppeak conditions (111 KM M/h). The m maximum Von misses expose to 815.31 Kg 45.2Mpa(eaastsiderow ws),themaximumcombiinedstressa actingon stressacctingoneacchpurlinis4 eachcro ossbeamis7 70.34Mpa(e eastsiderow ws)andthe maximumb bucklingstresssonsingle sideand doublessidecolumnsis83.5Mp paand7.5288Mparespe ectively.The differences betweenSo olidworks (FEA)an ndcalculationswere10 %↑,1.9%↑ and0.05% ↓foreastsidepurlins,eeastsidecro ossbeams andsingglesidecolumnsrespecttively.Thed esignissafe ewhereboth hcalculationnsandFEAareunder theallow wablestress(FOSof3.6w wasused). The actual enerrgy output of o a photovooltaic system m is affected d by the perrformance reduction nsevensubfactorswhicchtheyare, dustand factor(eefficiencyof thesystem)).Thisfactorrisbasedon dirt, low w irradiancce, inverter efficiency, modules mismatch, power toleerance, temperature coefficieent and mod dules degrad dation. The aannual energy that wou uld be produuced by the selected system in the first year is 2.10 07 GWH perr year or 5.7 77 MW per day (averagge). Due to modules d produce 11.737 GWh/yyear (in yea ar 25). The eestimated electricity e degradaation, the syystem would consumeedbyBahrainPolytechn nicfromJulyytoOctoberris205MWh h,169MWhh,216MWh and178 MWh reespectively. In July, 110 % of the eleectricity will be covered d by the solaar parking syystem, in August 124 %, in Seeptember 86 6 % and 93 % % in Octobe er. During ho olidays, the ssolar parkingg system produceelecttricitymorethanthereqquired;thessolarparking gsystemwo uldcoverab bout91.4 wouldp %oftheeenergyconsumedbyBa ahrainpolyteechnicinthe efirstyear. Theuniversitiesareclassifiedasanon‐ddomesticsecttor;theelectricitytarifffforthissecto oris0.02 KWh(Octobeer2016).The etotalprice ofelectricityythatwould dbeproduceedbythesysstemand BDperK consumeedbyBahrainpolytechn nicafter25yyearsare96 61,064.4BD and1,152,1152.1BDresp pectively; thesolarparkingprojectwould decreasethheelectricityybillsby83.4 4%(for25yyears).Furth hermore, D(25years);;thetotalele ectricitythattwouldbep produced thetotalcostofthissprojectis1.4millionBD bythisp projectis48 8GWh(25years).Thecoostofelectrricityproduccedusingsollarparkingssystemis 0.029 BD per KWh. The cost of producing eelectricity in Bahrain is 0.028 0 BD/KW Wh (operatio ons costs “fuelandwages”).TThepriceofssolarenergy ischeaperthanelectricitythatprod ucedusingffossilfuel (includin ngoperation ncostsandco ostsofbuild ingupapow werplant). Thiisprojecthasmanybene efitsforBahrrain.First,he elpingBahra aintofurtherrapplythep principles of sustainable development thrrough providding renewable and environmentallyy friendly altternative upportBahraainstrategiccplansinwh hichBahrain announced that5% forgeneeratingelectricity;thissu oftheto otalenergy wouldbeprroducedusinngsolarenergyin2020.Also,impleementingthisproject would improve pub blic health and local e nvironment by reducing air polluttants especially CO2 emission ns (about 40 4 metric tons t “total 25 years”)), and hencce minimizinng global warming. w Furtherm more,meet theincrease eddemandoonelectricityyinBahraintthroughutiliizingexistinggparking areasto oproducefu urtherpowerr.Finally,as aconseque encethatthe eelectricity costiswaitiingtobe increaseedverysoon nandthecontinuousdeecreaseofth hecostsofp photovoltaic devices;thisproject providessanalternattiveforgeneratingelectrricitywithve erycompetitivepriceforBahrainsocciety,and wouldsaavemoneyeespeciallyforrlongtermpplans.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page7of202

Tab bleofConte ents Abstract::....................................................................................................................................................................2 Acknowleedgments:....................................................................................................................................................3 ExecutiveeSummary:..................................................................................................................................................4

ChapterOne–Intrroduction:.................. . ...............................................................................17 1.1Inttroduction:.................................................................................................................................................17 1.2Litteraturereview w:..........................................................................................................................................17 1.3Aim msandobjecttives:.....................................................................................................................................19 1.4BahrainProspecctive:.....................................................................................................................................20

1.44.1ProjectbeenefitsforBa ahrain:...................................................................................................25 1.44.2ProjectbeenefitsforBa ahrainPolyteechnic:..............................................................................25 1.44.3Projectbeenefitsforen ngineeringd epartment:.......................................................................26 1.5Ch hapterssummary:.......................................................................................................................................26

ChapterTwo–The eoreticalmethodologyy,analysis& &design:..............................................27 2.1Inttroduction:.................................................................................................................................................27 2.2Steepstodesignasolarparkin ngsystem:.......................................................................................................27 2.3Themechanism mofPhotovoltaic(PV)solar system(mate erialscience):.......................................................30

2.3.1Atomicstructureofsilicon(Si):...............................................................................................30 2.3.2Summaryoftheelectricityproducctionprocesss:....................................................................31 2.4Solarcell,modu ule,paneland array:.............................................................................................................32 2.5SolarCellstypess:...........................................................................................................................................32

2.5.1Selectionfactorsforthetypesofssolarcells:.........................................................................33 2.6Solarsystemstyypes:......................................................................................................................................34 2.7Grrid‐tiedbatterry‐less:...................................................................................................................................34 2.8Grrid‐TiedwithB BatteryBackup(Hybrid):......................................................................................................35 2.9Maaincomponen ntsofsolarsystems:.............................................................................................................36 2.10Solarirradiancce–performan nceofsolarpaarkingsystem:..........................................................................40 Rotationoftheesunaboutitsimaginaryaxxis–AzimuthangleforBahrainPolytechnnic:..........................40 2.11R 2.12M MotionoftheSunrelativetoEarthandtiiltangle:...................................................................................41

2.12.1Declinationangle:.................................................................................................................42 2.12.2Latitudeangle:......................................................................................................................42 2.12.3Altitude//Elevationangle:.....................................................................................................43 Angle:.........................................................................................................................43 2.12.4ZenithA 2.12.5Analyzingsuncharts:............................................................................................................44 2.13A Analyzingtiltaangleforsolarrparkingstruccture(solararrraytiltangle):.....................................................44

2.13.1Optimum mtiltanglefo orparkingsttructure:...........................................................................45

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page8of202 2.14A AzimuthandtiiltangleanalyysisandselecttionforSolarparkingarea:.......................................................46 2.15H Heightofthesstructure:...............................................................................................................................48 2.16N Numberofparrksandparksdimensions:....................................................................................................48 2.17Selectioncriteriaformodule es(panels)maanufacturers:............................................................................48 2.19sttructuredesiggn:.........................................................................................................................................50

2.19.1Mechanics–someth heories,definnitionsandfo ormulas:........................................................51 2.19.2Factoroffsafety.....................................................................................................................56 2.19.3Windloaadsontheso olarstructuree:......................................................................................56 basedonstatticapproachandstandarrds:............................................56 2.19.4Windloaadanalysisb 2.19.5Materiallselection:................................................................................................................56 2.19.6Hotrolleedandcoldrrolledsectionns:.....................................................................................57 2.19.7UniversaalBeam(UB)).............................................................................................................58 2.19.8Someof f therequired dprocessesfforfabricatin ngtheparkin ngstructure::............................58 2.19.9MethodssofJoining:..............................................................................................................58 uremodelingg:............................................................................................................59 2.19.10Structu 2.19.11Finiteeelementanalysis(Solidwoorkssimulation):...............................................................59 2.20P Powercalculattion:.......................................................................................................................................59

2.20.1Stepsforrcalculatingperformanccereductionfactor:...........................................................60 2.21B BahrainPolyteechnicpowercconsumption andsavings:.............................................................................61 2.22C Costanalysis:...............................................................................................................................................61 2.23M Meaningoftheecriteriaratin ng:...................................................................................................................61

ChapterThree–Resultsanddiscussion: ..............................................................................62 3.1Inttroduction:.................................................................................................................................................62 3.2Selectingthetypeofsolarcell:....................................................................................................................62 3.3Selectingatrackkingsystem(ttotrackornotttotrack):................................................................................64 3.4SelectingthetypeofPVsolarrsystem:.........................................................................................................65 3.5Azimuthandtilttangleanalysis–selection directionoftheparkingstrructure:..........................................67

3.5.1Designop ption1:......................................................................................................................67 3.5.2Designop ption2:......................................................................................................................68 3.5.3Designop ption3.1–SingleSlope:............................................................................................69 3.5.4Designop ption3.2–Do oubleslope: .........................................................................................70 3.6Fin naldesign:...................................................................................................................................................70 3.7Heeightoftheso olarparkingstructure:..........................................................................................................74 3.8Parkingareameeasurements:.......................................................................................................................75 3.9mo oduleselectio on:..........................................................................................................................................78

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9of202 3.9.1Decisionm matrix(selecctingthemoddulecompan ny):................................................................79 ns:..................................................................83 3.9.3Summaryoftheselectedmodule specification 3.10Forcecalculation:........................................................................................................................................84

3.10.1Windloaadcalculation:..........................................................................................................84 3.10.2Factoroffsafety:....................................................................................................................89 3.10.3Designselection:...................................................................................................................91 orceanalysisandfindingtthesizeofth hepurlin:(ca alculationforronepark):..........91 3.10.4Purlinfo 3.10.5Purlinfo orceanalysis(correctedccalculation):.......................................................................97 3.10.6Crossbeaamforceana alysisandfinndingthesize eofthepurlin:(calculatioonforonep park)...99 alysis(correcctedcalculation):............................................................102 3.10.7Crossbeaamforceana heendplateselection:...........................................................................................103 3.10.8Sizeofth 3.10.9Numberandsizeofb boltscalcula tion:................................................................................104 withdifferenttslope):..................................110 3.10.10Forcesoncolumn(ffordouble‐s idedparksw 3.11C Componentso oftheparkingstructure......................................................................................................124 3.1233ddesign(asseemblyoftheccarpark):......................................................................................................130 3.13W Watermanageementsystem(optional):...................................................................................................132 3.14B Billofmateriall:..........................................................................................................................................133 3.15TTotalstressfro omSolidworkss(FEA):..........................................................................................................134 3.16P Powercalculattion:.....................................................................................................................................136 3.17In nverterselecttion:.....................................................................................................................................147 3.18Simplemodificcationinthesstructure:.......................................................................................................152 3.19C Costanalysis:.............................................................................................................................................152

ChapterFour–Conclusionsa andrecomm mendations:.........................................................156 4.1Inttroduction:...............................................................................................................................................156 4.2Maainfindingsan ndconclusion n:....................................................................................................................156 4.3Reecommendatio onsforfuture erelatedactiv itiesandimprrovements:........................................................158 Bibliography...........................................................................................................................................................160 dtiltangles...................................171 Appendixx(A)–Averaggesolarradiationpermont hfordifferentazimuthand Appendixx(B)–Electriccaltermsandmodulesarraangement................................................................................172 Appendixx(C)–Shadinganalysis............................................................................................................................174 Appendixx(D)–Finiteeelementanalyysis................................................................................................................177 Appendixx(E)–Solarm modulesdatasheet..............................................................................................................182 Appendixx(F)–Microinverterdatassheet..............................................................................................................188 Appendixx(G)‐EngineeeringDrawinggsfortheparkkingstructureComponents....................................................190 Appendixx(H)‐IRCstan ndardfootinggdimensions..................................................................................................202

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page1 10of202

Taableoffigurres Figure1,SadiaAram mcoSolarcarportproject .........................................................................................18 COClubparkkingshades............................................................................................19 Figure2,AwaliBAPC ofArabPetrooleumExporrtingCountriesinworldffueloil...................21 Figure3,ShareofOrrganizationo nandgeneraationinBahrrain(2000to2011).......................................21 Figure44,electricitycconsumption O2Emissions2005–20099........................................................................................22 Figure5,BahrainCO untries...........................................................22 Figure6,CO2emissiionratepercapitain10 differentcou ,ElectricityC Consumption nbySector( (2007) . ......... ......................................................................23 Figure7 O2Emissions fromFuelC ombustionin2009bySe ector(millionntons)..................23 Figure8,BahrainCO nthefuture...............................23 Figure9,theexpectaationofphotovoltaicseffficiencyimprovementin oductionplannsforGCCco ountries.........................................................24 Figure10,renewableeenergypro ectronsC)SiliconCrystalllinestructurre.......30 Figure11,A)SiliconatomicnumberB)Silico nvalenceele Figure12,P‐typeSiliiconandN‐typeSilicon............................................................................................31 on..............................................................................................................................31 Figure13,PNjunctio Figure14,SolarCellStructure.................................................................................................................31 Figure15,themovementofelecctronsthrougghthePNjunction...........................................................31 ule,panelan ndarray(from mcelltoarraay).................................................................32 Figure16,cell,modu Figure17,TypesofssolarCells..................................................................................................................32 Figure18,SinglecrystallineCellss.............................................................................................................32 Figure19,Polycrystaallinecells.................................................................................................................33 Cells(Amorp phous)....................................................................................................33 Figure20,ThinfilmC PhotovoltaicSystems................................................................................................34 Figure21,typesofP Figure22,componentsofGrid‐tiedsystem( batteryfreesystem)........................................................34 dsystem(Grrid‐tiedbatte erybasedsysstem).........................................35 Figure23,componentsofHybrid onnectedinp parallel......................................37 Figure24,wiringcirccuitfortwophotovoltaiccmodulesco Figure255,(A)3modullesconnectedwithastringinverter‐(B)3modulesco onnectedwithh3microinve erters...38

Figure26,Azimuthaangle.........................................................................................................................40 Figure27,theearthtakesanellipticalpathaaroundthesunduringaffullyear.....................................41 duringsumm mersolstice............................................................................................41 Figure28,earthtiltd Figure29,earthtiltd duringequin noxesandwiinterandsum mmersolsticce...............................................42 Figure30,declinatio onanglefore eachseason .........................................................................................42 ountrylocateedatpointP P.....................................................................43 Figure31,Latitudeaangleforaco Figure32,Altitudeaangle..........................................................................................................................43 Figure33,zenithanggle.............................................................................................................................43 Figure34,asunchartfor30°northlatitude. .........................................................................................44 Figure35,BahrainPolytechnicla atitudeandl ongitude...........................................................................44 Figure36,moduletiltangle.....................................................................................................................45 Figure37,moduletiltangle(A)a andaltitude...........................................................................................46 es..............................................48 Figure38,GuidelinesfortheDessignofOff‐SttreetCarParrkingFacilitie oftheparks...........................................................................................48 Figure39,measuringgthewidtho Figure440,Axialtenssilestress...................................................................................................................51 Figure441,rectangularshapewitthabasewiddthofbandheighth........................................................52 offoracolum mnfixedatth hebaseandfreeatthettop........................53 Figure442,effectivellength(Le)o Figure443,shearstreessinabolt...............................................................................................................53

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page1 11of202 Figure444,momentiinaconnectiionplate................................................................................................53 ngmaximum mshearandn normalstresss................................................54 Figure445,2dMohrccircleshowin Figure446,Webandflange.......................................................................................................................55 Figure447,movingaforceonitslineofactionn........................................................................................55 Figure448,movingaforceoffofiitslineofacttion...................................................................................55 Figure449,LogoofAl‐Zamilsteel..............................................................................................................57 nshapes(hottrollingproccess)..............................................................57 Figure50,Differentsteelsection ections...................................................................................................58 Figure51,Flushendplateconne Figure52,Finplatecconnections..............................................................................................................58 olarradiation nreceivedbyymodulepermetersqua ared...........................................65 Figure53,Annualso Figure54,A)trueAzzimuthdirecttionforparkkingareaB)sschematicfordesignopt ion1.....................67 designoptionn1........................67 Figure55,C)shiftinggfirstrowtotheleftsideeD)similarstructuretod Figure56,Azimuthaanglefordessign2(azimuuth148.3)..........................................................................68 parkingarea(design3)........................................................................69 Figure57,A)Azimutthangleforp Figure58,design3(onesideparrking).....................................................................................................69 design3douubleslope…… …………………… …………………… …………………… …….……70 Figure59,A)arraysorientationd olarradiation nforazimuthh148.3degrees................................................................71 Figure60,Annualso olarradiation nforazimuthh238.3degrees................................................................71 Figure61,Annualso onaboutann nualsolarirrradiance............................................................................72 Figure62,compariso esign3doubleslopping................................72 Figure63,Totalsolarirradiancereceivedannnuallyforde opingdesign nimplementeedbySolaire eandbyPetrasolar......................................74 Figure64,Doubleslo Figure65,heightofthesolarstructure...................................................................................................74 map...................................................................................75 Figure66,BahrainPolytechnicsttudentscarm Figure67,areaofpaarkingrow1..............................................................................................................76 Figure68,areaofpaarkingrow1..............................................................................................................76 nsofonepark...........................................................................................................77 Figure69,dimension nsoftwoparks.........................................................................................................77 Figure70,dimension hes.........................................................................................................79 Figure71,Canadiansolarbranch dulescoverin ngtwoparks .........................................................................................82 Figure72,solarmod Figure73Canadian““QuartechCS6V‐225M” powerwarraanty...............................................................83 nd..................................................................86 Figure74,Heightoftheparkingstructurefroomthegroun parkingstruccture.........................................88 Figure75,1)SandZZfornormalopensign2) SandZforp ons.........................................................................................................91 Figure76,Structuredesignoptio edonsevenppurlins..............................................................................91 Figure77,ninemodulesmounte edonsevenppurlins..............................................................................92 Figure78,ninemodulesmounte Figure79,Frontview wofthepurlin(distributeedforce)...........................................................................93 wofthepurlin(resultanttforce)–FBD Doftheforcesactingonthepurlin............93 Figure80,Frontview Figure81,freebodyydiagram,sh hearforceanndbendingm momentdiagram............EError!Bookm marknot defined. Figure82,Cchannelldimensionss.............................................................................................................95 ofinertiaabo outaxisofbeendingusinggSolidworks.................................................96 Figure83,momento Figure84,Cchannelldimensionss.............................................................................................................96 Figure85,forcesacttingonthepurlin......................................................................................................97 ndingaboutxaxis.....................................................................................................97 Figure86,purlinben ndingaboutYaxis.....................................................................................................98 Figure87,purlinben

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page1 12of202 Figure88,stressactingonabeaminthemidddlepoint(se ectionA‐A)....................................................98 dactingoneachcrossbeaam.....................................................................................99 Figure89,Totalload Figure90,momento ofinertiaabo outaxisofbeendingusinggSolidworks.................................................99 hearforceanndbendingm momentdiagram(forcrosssbeam).........Error! Figure91,freebodyydiagram,sh ned. Bookmaarknotdefin Figure92,forcesoncrossbeam.............................................................................................................102 m(Isection)weldedwithhasteelplatte.................................................................103 Figure93,Crossbeam Figure94,theeccen ntricloadapp pliedonbolt sbyplate........................................................................104 Figure95,shearforcceonbolt................................................................................................................105 oftheboltsfrompointC.........................................................................................106 Figure96,locationo ndshearactingontheboolt...................................................................................107 Figure97,tensionan ndshearactingonpart““Y”...................................................................................108 Figure98,tensionan quiredtodra awMohrcyc le....................................................................................108 Figure99,Pointsreq Figure100,tensionaandshearacctingonpart“Y”.................................................................................108 Figure101,PointsreequiredtodrrawMohrcyycle..................................................................................108 Figure102,Boltsinsideendplate..........................................................................................................109 ncolumn(do ouble‐sided parkwithdiffferentslope e).............................................110 Figure103,forceson nceM1and M2..................................................................................110 Figure104,calculatingthedistan Figure105,movingaaforceonitsslineofactioon....................................................................................110 Figure106,movingaaforceoffoffitslineofa ction...............................................................................111 Figure107,forceonthecolumnatpointA...........................................................................................111 ndingatpoin ntA......................................................................................................111 Figure108,totalben Figure109,thetotallofverticalloadsatpoinntA..................................................................................112 noftheforce esactingon thecolumnatpointA....................................................112 Figure110,direction Figure111,axialforcceactingonthecolumn.........................................................................................113 Figure112,bendingofacantilevverbeam.............................................................................................113 Figure113,bendingforceactinggonthecolu mn..................................................................................114 edstress...............................................................................................114 Figure114,thecolumncombine nunderanaxxialforce.........................................................................115 Figure115,Bucklinggofacolumn ncolumn(sin nglesideparrk)...................................................................................117 Figure116,forceson ncolumn(sin nglesideparrk)atpointA A..................................................................117 Figure117,forceson Figure118,forceacttingonthecolumn(poinntA)andreactiononthefooting...................................119 middleofthefooting.....................................................120 Figure119,momenttandforceactinginthem eleftsideanndrightsideofthefootin ng.............................................120 Figure120,reactionforceonthe hefooting.............................................................................................121 Figure121,thedimeensionsofth eparkingstrructureB)Paartsofdoublesideparkinngstructure........122 Figure122,A)Partsofsingleside ashers(M20‐‐L60mm).......................................................................124 Figure123,bolt,nuttandtwowa Figure124,boltandnut(M12–L35mm).............................................................................................124 nSolarmoduule(“Quarte echCS6V‐225 5M”)........................................124 Figure125,amodelforCanadian desteelsheet(sheet1)...........................................................................................125 Figure126,Rightsid Figure127,middlessteelsheet(ssheet2)................................................................................................125 Figure128,Leftsideesteelsheet(sheet2).............................................................................................125 Csection).................................................................................................................126 Figure129,Purlin(C odulesfixedb byfoursteel sheetsusingg36boltsan ndwashers““sizeM12”..........126 Figure130,(A)9mo Figure131,crossbeaam...........................................................................................................................127

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page1 13of202 Figure132,Column.................................................................................................................................127 deparkingassemblywithhfooting(tilt5degrees) ...............................................127 Figure133,Singlesid Figure134,leftandrightsidesheets.....................................................................................................128 mandsolararrray.................................................................................128 Figure135,tiltoftheecrossbeam Figure136,bolts,waashersandnutsfittedinssidethestructure...........................................................128 11°westand5°east)–S ideView.............128 Figure137,doublessideparkwithadifferentttiltangle(1 11°westand5°east)–Issometric.............129 Figure138,doublessideparkwithadifferentttiltangle(1 Figure139,BahrainPolytechnicstudentsparrkingarea– Topview.....................................................129 deparktilt1 11(arraystow wardwest)– –sideview...................................................130 Figure140,Singlesid deparktilt1 11(arraystow wardwest)– –frontview.................................................130 Figure141,Singlesid deparktilt1 11(arraystow wardwest)– –Isometric...................................................130 Figure142,Singlesid deparktilt5 5(arraystow wardeast)–Isometric......................................................130 Figure143,Singlesid deparktilt5 5(arraystow wardeast)–ssideview......................................................131 Figure144,Singlesid w;westarrayystilted11°aandeastarra aystilted5°––sideview..........131 Figure145,doublessideparkrow w;westarrayystilted11°aandeastarraystilted5°– –Isometric...........131 Figure146,doublessideparkrow Figure147,BahrainPolytechnicstudentparkking(9parkingrows)–siideview..................................131 Figure148,BahrainPolytechnicstudentparkking(9parkingrows)–Issometric..................................131 Figure149,GroundSSewer.....................................................................................................................132 Figure150,PipesSewer.........................................................................................................................132 ndingandaxxialstressacttingonthep purlin............................................................134 Figure151,totalben ndingandaxxialstressacttingonthecrossbeam....................................................135 Figure152,totalben ndingandaxxialstressacttingonthecolumn.........................................................135 Figure153,totalben ntheparkinggcomponenttsinMPa.....................................................136 Figure154,totalstreessactingon degradationperformanceereductionffactorPFMD D...............................................137 Figure155Moduled areaforwesstandeastp parks.............................................................138 Figure156,totalsolaarmodulesa BahrainPolyytechnicsolarparkingpro ojectmonthlly........................140 Figure157,PowerproducedbyB BahrainPolyytechnicsolarparkingpro ojectyearly.............................142 Figure158,PowerproducedbyB ncampus.................................................................................................................143 Figure159,Isatown ndgenerateddfromJulyto oOctoberfo orBahrainPoolytechnic...........144 Figure160,Energycconsumedan ndgenerateddperyearforBahrainPo olytechnic................................145 Figure161,Energycconsumedan Figure162,averagecostofelecttricitybillspeermonthforrBahrainPollytechnic(firrstyear)..............147 Figure163,averagecostofelecttricitybillspeermonthforrBahrainPollytechnic(255years)...............147 mpatibilityonnlinetool........................................................................148 Figure164,Enphaseemodulecom Figure165,PV2bconnecterandMC4conneccter.................................................................................148 oamicroinvvertertoanengagecable e..............................................149 Figure166,moduleconnectedto Figure167,stringen ngagecabled dropconnec ter..................................................................................149 Figure168,threemiicroinvertersmountedoonapurlin.......................................................................150 Figure169,twocarp parkscovere edbyninem modules............................................................................150 ecableswouldbeconneccted)...................151 Figure170,Initialdiaagramofwirringthesysteem(howthe Figure171,finaldessignofthestructure................................................................................................152 urrent(DC)a andalternati ngcurrent(A AC)...............................................................172 Figure172,Directcu modulescon nnectedinseeries.................................................................................172 Figure173,FivePVm modulescon nnectedinpaarallel..............................................................................173 Figure174,FivePVm ulesconnectedinaseriees‐parallelco onfiguration.................................................173 Figure175,PVmodu dulesinstalle edawayfrom meachotherr...................................................................174 Figure176,twomod

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

14of202 Page1 Figure177,azimuthandaltitude eangledurinngdayhours(Bahrain–W Wintersolsticce)......................174 mspacingdisstanceD.......................................................175 Figure178,thedistaanceD'andttheminimum Figure179,NOAASo olarCalculato or........................................................................................................175 ewwithouteeastparks........................................................................176 Figure180,Parkingaareasidevie dcoarserme eshing(thessmallerismo oreaccurate))..............................................177 Figure181,Finerand dy........................................................................................................177 Figure182,selectinggtypeofstud alforpurlin, crossbeamaandcolumn.................................................178 Figure183,selectinggthemateria beam....................................................................................................178 Figure184,convertingpartstob Figure185,creatingjoints.....................................................................................................................179 Figure186,usingolivejointsasffixturesforppurlin...............................................................................179 erbeam)anddcolumn.............179 Figure187,usingoneolivejointasafixturefforcrossbeam(cantileve aneinSolidw works...............................................................................180 Figure188,stepsforrcreatingpla B)inclinedplaneforpurllin............................................180 Figure189,A)inclineedplaneforcrossbeamB Figure190,resultanttforceactinggonthepurrlin...................................................................................180 Figure191,resultanttforceactinggonthecrosssbeam...........................................................................181 ndrule.....................................................................................................................181 Figure192,righthan Figure193,forceandmomentactingoncoluumn.................................................................................181 Figure194,moduleQuartechCSS6V‐225M(CCanadian).........................................................................182 Figure195,moduleQuartechCSS6V‐225M(CCanadian)–ccontinue.......................................................183 00‐Ade‐dataasheet............................................................................184 Figure196,Module2:PLUTO20 00‐Ade‐dataasheet‐continue...........................................................185 Figure197,Module2:PLUTO20 Figure198,X20‐250‐BLK(Sunpower)‐datassheet‐datassheet...........................................................186 Figure199,X20‐250‐BLK(Sunpower)‐datassheet‐continue..............................................................187 oinverterssppecificationsssheet.........................................................188 Figure200,EnphaseeM215micro oinverterssppecificationsssheet.........................................................189 Figure201,EnphaseeM215micro drawing...............................................................................................190 Figure202,NutandBolt(M24)d drawing...............................................................................................191 Figure203,NutandBolt(M12)d wing.....................................................................................................192 Figure204,Nutandwasherdraw Figure205,Columndrawing..................................................................................................................193 awing..................................................................................................194 Figure206,crossbeaam(tilt5)dra Figure207,crossbeaam(tilt11)drawing................................................................................................195 drawing...................................................................................................................196 Figure208,footingd Figure209,purlindrrawing.....................................................................................................................197 drawing...................................................................................................................198 Figure210,sheet1d drawing...................................................................................................................199 Figure211,sheet2d Figure212,sheet3d drawing...................................................................................................................200 nsolarmodu uledrawing.........................................................................................201 Figure213,Canadian Figure214,selectinggthestandarrddimensionnsforthefoo otingaccordingtoIRCst andard...............202

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page1 15of202

Taableoftablles Table1,photovoltaicenergyhisttory.......................................................................................................17 Table2,somevariab bleseffecton ntheeffectivvenessofsolarparkingsystems......................................19 Table3,Installedcap pacityinBah hrainbytypeesofgenerattion................................................................20 Table4,SolarCellSttructure.....................................................................................................................31 Table5,thedifferen ncebetweenpanelandm module...............................................................................32 efinformatio on...............................................32 Table6,MajortypessofPhotovoltaicSolarCeellswithbrie Table7,Microinvertter,StringinverterandCCentralinverter.................................................................38 Table8,moduletiltanglefromh horizoneachhseasonforB Bahrain..........................................................46 onlinecalculators.........................................47 Table9,annualsolarradiationanddatasourrceforfouro Table100,differentteermswillbeusedinnexttsections..........................................................................51 TableA,Themeanin ngofthecriteriarating.............................................................................................62 nstalledcapaacity...................................................................................62 Table111,Percentageeofglobalin Table122,Currentco ommercialeffficiencyatSTTC(ηSTC)fordifferentso olarcells(moodules).................62 Table133,decisionm matrixformo oduleefficienncy.....................................................................................62 Table144,Temperatu urecoefficientforpowerr(K)...................................................................................63 Table155,Averagew weathertemp perature innBahrain...........................................................................63 Table166,thedropo ofsolarmodu uleefficiencyy........................................................................................63 Table177,decisionm matrixfortem mperaturecooefficient(K)criterion.......................................................63 Table188,CostperW Wproduced((2009)....................................................................................................63 Table199,decisionm matrixformo oduleCost..............................................................................................64 Table200,decisionm matrixfordurrability...................................................................................................64 Table211,summaryo ofdecisionm matrixesand selectingthebestsystem m...............................................64 Table222,decisionm matrixforsele ectingtypeoofsolarsyste em..................................................................66 Table233,Totalsolarrirradiancerreceivedannnuallyfordessign2and3...................................................71 Table244,Totalsolarrirradiancerreceivedannnually.................................................................................72 Table255,finaldesign nsingleside parks......................................................Error!Boookmarknotdefined. Table266,finaldesign ndoublesideparks..................................................................................................74 Table277,numberoffparksineacchrowoftheemiddlearea....................................................................75 Table288,Parkdimen nsions.......................................................................................................................76 Table299,alistofsollarcompanie eswithlinks forhundred dsofmodulesdatasheetss............................78 Table300,CommonSStandardMo odulesizes.............................................................................................78 Table311,decisionm matrixforsele ectingModuuleCompanyy(basedonthedatasheeets)........................80 Table322,Totalareacoveredbytthemoduless.........................................................................................82 Table333,Summaryo oftheselectedmodulesspecifications....................................................................83 Table344,RiskCategoryofBuildingsandOth erStructures....................................................................84 Table355,WindDirecctionalityFacctor.......................................................................................................85 Table366,ExposureC Category...................................................................................................................86 Table377,TerrainExp posureConstants.....................................................................................................87 Table388velocitypreessureexpossurecoefficieent....................................................................................87 Table399Clearareaaaspectratio..............................................................................................................88 Table400,arrayloadssactingonthepurlin...............................................................................................92 Table411totalloadacctonthepurlins.......................................................................................................92 Table422,thedimensionsof3Ccchannelbea msfromAl‐ZZamilcatalog gue............................................95 Table433,dimensionsof3“I”secctionbeams fromAl‐Zam milcatalogue...............................................101

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

16of202 Page1 Table444,standardssizesofsteelplates.................................................................................................103 Table455,standardssizesofboltsforZamilsteeel...................................................................................104 Table466,designgiveens..........................................................................................................................105 Table477,distanceoffthecenterofthebolts toPointC(b bottomoftheplate)...................................106 Table488,designgiveens..........................................................................................................................107 Table499,standardssizesofnutsffromZamilssteelcatalogue................................................................109 Table500,standardssizesofnutsffromZamilssteelcatalogue................................................................109 Table511,Summaryo oftheselectedNut,boltandwasherrfromAL‐Zam milcataloguee.........................109 Table522,Summaryo oftheresults(Columnsppecificationsfordoublessidedparks) ...........................116 Table533,Summaryo oftheresults(Columnsppecificationsforsingesid deparks).................................118 Table544,Soilbearin ngpressurefordifferent kindsofsoil ....................................................................121 Table555,summaryo offorcesactingonthepaarkingstructture..............................................................122 Table566,listofthem materialrequiredtobuil dtheentireparkingstru ucture......................................133 Table577,temperatu urecoefficien ntperformanncereductionfactorfrom mJanuarytooDecember.........137 Table588,Moduledeegradationperformance reductionfaactorPFMDp peryear..................................137 Table599,performan ncereduction nfactorper month.............................................................................138 Table600,totalsolarmodulesare eaforwestaandeastparkks.................................................................138 Table611,energypro oducedbywestsidesolaarmodules.......................................................................139 Table622,energypro oducedbyea astsidesolarrmodules........................................................................139 Table633,energypro oducedbyBa ahrainPolyteechnicsolarparkingprojectmonthly...........................139 Table644,annualam mountofsolarirradiance a.....................................................................................141 Table655,totalenerggyproducedbythesysteemperyear.....................................................................141 Table666,energycon nsumedbyIssatowncam mpusinKW‐h hfromJulyto oOctober................................142 Table677,totalareaofBahrainPolytechnicbbuildings..........................................................................143 Table688,,totalareaofUniversittyofBahrain buildings........................................................................144 Table699,theenergyyconsumedffromJulyto Augus.............................................................................144 Table700,electricitypricesinBah hrain(tariff).........................................................................................145 Table711,theelectricitytariffforrnon‐domesstic(2016).......................................................................145 Table722,totalsavingsfor25yea ar.........................................................................................................146 Table733,calculatinggtotalnumberofstrings perrowand dfortheentiireproject...............................151 Table744,totalcosto oftheinvertersandmoddules................................................................................153 Table755,costoftheestructure...............................................................................................................154 Table766,Projectinittialcost(bud dget)....................................................................................................155 Table777,maintenan ncecostperyyear.....................................................................................................155 Table788,averageso olarradiation npermonth .......................................................................................171 Table799,averageso olarradiation npermonth .......................................................................................171 Table800,averageso olarradiation npermonth .......................................................................................171 Table811,someofbaasicelectrica alterms................................................................................................172

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page1 17of202

ChapterOne–Intrroduction: 1.1 Intrroduction: Renewableenerrgyisontherise,largelyytoreduced dependencyo onlimitedreeservesoffo ossilfuels msunlight andtoleesseneffectsofclimatechange(globbalwarmingg).Thegenerrationofelecctricityfrom directly (Photovoltaic “PV”) ove er the last ddecade has been b growin ng hugely woorldwide. Th his is not ngasthesolarenergytechnologiesaarenolongerexpensiveandthesun canproduce egreater surprisin than2,5500Tera‐wattts(TW)ofte echnicallyacccessibleene ergyoverlargeareasofEEarth′ssurfa ace.Solar energy has several positive asspects such as, reductio on of green nhouse gasees, increased d energy ndence,jobo opportunitiessandimprovvedqualityo oflife.[1] indepen BahrainandtheremainingG GCCcountrieeshavehuge eresourceso ofcrudeoilaandnaturalggasabout 478billionbarrelsofcrudeoiland41.92billlioncubicmetersofnatu uralgasreprresentingabout42% and 24 % of the wo orld’s total resources r resspectively (e estimated in 2004). In yyear 2000 the United urvey (USGS) estimated that the GCC G countrie es have unddiscovered crude c oil State Geological Su potentiaalabout162billionbarre els(about177%ofthew world’stotal)and23.3triillioncubicm metersof naturalggas(about1 16%ofthew world’stotal)).Thesefactssexplainwhythedeveloopmentofre enewable cleanen nergyisstillrrelativelylow winspiteof GCCregionandespeciallyBahrainhhaveaccessttooneof theworld’smostabundantsolarrresources. [2] The mainaimoffthisprojecttistopropooseamethod dforutilizing gsolarenerggythroughd designing parking structurewiithasolarsyystem(PV)foorBahrainPolytechnicsttudentparkiingarea.Thiissystem ncludingshad dingthevehhiclesandproducingelecctricity.Theddesignedsysstemcan hastwofunctionsin be used d for solving the power consumptioon with it is effects on human h healtth and envirronment, findingaasolutionforlackofland dsissuesinB Bahrainandaachievingthe esustainabillity. 1.2 Lite erature review: The developmen nt of solar energy e starteed since 19thh century; th he real evoluution of sola ar energy started in1973(theeturningpoint)[3].Thettablebelow showsbriefhistoryabo utsolarpho otovoltaic energy: Table1,phhotovoltaicen nergyhistory [3]

Image

Event

Brriefdiscerptiion

overyofPho otovoltaic Disco Effect(183 39)

Becquerelnoticedtha atshininglighhtoncertain nmaterials createsan nelectriccurrent.Thisw wasthestarrtpointfor photovolttaictechnolo ogy.[3]

FirrstsolarCell(1883)

Charles in nvented the e world’s firsst solar cell. It was a device which converrts sunlight into electricity, using selenium and gold; the t cell’s effficiency wass less than 1%.[3]

Photons(19 921)

AlbertEin nsteinisawardedtheNoobelPrizeinPhysicsfor his “disco overy of the law of the photoelectrric effect.” This low w representss a theoreetical found dation for modernP PVtechnology.[3]

Com mmercialsola ar(1954)

Siliconsollarcellsente eredthemarrket.[3]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page1 18of202

Oilcrisis(19 973)

1GiggaWattofso olarpower (2000)

Cumulativveglobalsola arinstallatioonpassed1G GW.[3]

Solar indu ustry exceed ded the com mputer indusstry as the largestco onsumerofhigh‐puritysi licon.[3] Thecosto ofhighqualitysiliconsoolarpanelsd droppedto 0.357B BDperWattSSolarPanels roughly 0.357 0 BD per p watt, oopening new w markets (2011) around the t world and drivinng a global energy revolution n.[3]

0B

This is the turning po oint in solar energy whe ere one of GCC coun ntries annou unced that tthey would no longer ship oil to o nations tha at had supp orted Israel.. Oilprices increaseddramaticallyyduringthisstimeleadin ngtoworld powers liike, Western n Europe, thhe United States S and Japantosseekoutall newforms ofenergyth hatdidnot rely on oil. This push led to the developmen nt of more powerfulandcost‐efficientsolarddevices.[4]

HugeSilicondema and(2006)

1B

The photovoltaiic devices (ssolar panels)) convert su unlight into electricity e thhrough an electronic e process thathappen nsnaturallyiincertaintyppesofmaterrialslikecrysstals.Theseddevicesaretthemost common nformofso olartechnolo ogyusedto supportapp plicationsin theparking industrywh herethey havearrangeofben nefitsincludingmassive energysupp ply,lowerco osts,reduceddmaintenan ncecosts andlessenvironmen ntalimpacts..[4] Receently, some new solar parking p projeects were built or being g built in GCCC countries such as, SaudiArrabiaandBahrainaswell.  The worldlarge estsolarparrkingprojectt(SaudiArabia):thelarrgestsolarp arkingproje ectinthe abiainDhah ran.Thetotaalnumberoffcoveredpaarkingspacessis4,500 worldislocatedinSaudiAra parkks;thisprojeectisbeingb built.Inthispprojectmore ethan120,0 000CIS(CoppperIndiumSSelenide) phottovoltaicmo oduleswould dbeinstalledd.[5]

Figu ure1,SadiaA AramcoSolarccarportprojecct[5] Let Bahrain Shine Project: this project was accomplished by the t collaboraation between Petra W Authority (EWA), Bahrain Pe etroleum Solaar, Caspian Energy Holdings, Electtricity & Water Com mpany(BAPC CO),UniversityofBahrainn(UOB),the eNationalOilandGasA uthority(NO OGA)and the Governmentt.Itrepresen ntsthefirstsstepinbuildingasmartccommunityw withadvancedsmart ogies in Bahrain. This prroject (includ des solar carports, solarr lights and separate enerrgy technolo solarsituations)wasimplem mentedindiffferentlocatiionssuchas,,BAPCOClubbparkingsha adesand parkingshade es.Thewhol esolarproje ectisestimattedtoproduuceabout4.2 2GWhin AwaaliServicesp the first year [6 6]. Visiting this t project helped me in analyzing g and selectting the app propriate com mponents,dirrectionandttiltofthestr ucture.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page1 19of202 des(photowa astakenbym me) Fiigure2,AwaliBAPCOClubbparkingshad

The mainchalleengewhiledesigningasoolarparking systemishowtomaxim mizethepottentialof b the client (Bahrain PPolytechnic) such as, the sun and still deeliver all of the feature s required by coveringg the entire park, safetyy, cost, aesthhetic, and ease of maintenance. [4]] There are so many variablesthatcanim mpacttheefffectivenessoofsunlight;someofthekkeyvariablessare: TTable2,somevvariableseffecttontheeffectivvenessofsolarrparkingsystem ms

Thesolarpanelsshoulddbeplacedttowardstheequator(tow wardtrueso outhortrue uth“180°orr0°”).Astud dydonebyM Mr.MichaelBBoxwellshow wsthatthe northazimu Direction(Azimuth) effectivenessofasolarrmodulemo ountedawayyfromtruessouthdecreasesby1.1 %foreveryyfivedegree sawayfromtruesouth.[7] Theinclinattionofthea rrayfromthehorizonim mpactstheefffectivenessofthesolar panel. A sttudy done i n Bahrain regarding r the potential of making sustainable buildingsin ntheKingdoomofBahraiin;inthisstu udytheamoountofsolarrirradiance was measu ured experim mentally forr Al‐Moayed d tower (loccated in Ma anama) for Solarpaaneltilt different tilt angles (0°°, 10°, 16°,2 20°,26°,30° and a 36°) andd azimuth 180°. It was found that the tilt 26° produces th he maximum m power theen 20°, 30°,1 16°,36°, 10° and 0° respectively. The results of this study will noot be used (different conditions);thesedata willbeused dtoanalyzettheaccuracyyoftheestim matedsolar irradianceb byanonline calculator.[4][8] Themanufacturersofssolarparkinggsystemsussesmalltilt anglebetwe een0to10 Solarsttructure eheightconsstraints(highhstructuresexposedto degreesduetoloadsanndstructure morewindloads,andt hegreatertiiltanglerequ uirehighstruucture).[9][10] Aresearch doneby(R.E.Hanitsch andDetlefSchulz)toinnvestigateth he“Shading Effects on Output Pow wer of Grid Connected Photovoltaicc Generatorr Systems”. Through th his research it was found d that the so olar panels aare very sen nsitive from Shaade shadewherealittlesh adeonone panelcansh hutdownennergyproducctionofthe entirepane el/s.Thedisttancebetweenthesolarparkingarraaysshouldbesufficient toavoidsha ade.[11][122] Acco ordingtotheeaforementiionedvariabblesandclien nt'sconstrain nts;thisdocuumentwillpropose4 design o options for the t structure e. Then, it w will select the best desig gn option thaat would de eliver the best com mpromise. Then, T the sttructure will be analyzed (stress calculations annd FEA), and all the required dcomponenttswillbeselected.Finallly,thepowerconsumedandproduceedwillbeca alculated, andthe costofthessystemwillb beestimatedd.Theliterattureavailable eontheimpplementation nofsolar overparking lotsisquite elimited;moostofthefin ndingsofthisprojectareefrombookks,online panelso sourcesandthrough hanalyzingA Awalisolarprroject. ms and objectives: 1.3 Aim Theobjectiveso ofthisproject: 1. Study the potential p of solar energyy in Bahrain n, the develo opment of rrenewable energy e in Bahrainand dtheimpactssofimplemeentingthisp projectinterrmsofsusta inabilityand dcostfor Bahrainisocciety.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2 20of202 2. Design a solar parking system s insidde Bahrain Polytechnic P campus c for tthe studentss parking m area only) o using pphotovoltaicc solar panels to generaate electricityy from a area (the middle sustainable and renewa able energy source (the e sun). Thus, reduce thee costs of electricity e urningfossilffuelsandimprovepublicchealthand localenviron nment. consumption,reducebu olar systemss with the re equired com mponents forr each syste em. Then 3. Analyze thee types of so selecttheap ppropriateco omponentsffortheselecctedsystem. 4. Define the required parameters foor designing the solar panels; then determine the best direction an nd orientatio on of the pa nels with th he parking sttructure usinng online ca alculators andanalysiss. partsofthep parkingstruccturebycalcculatingstresssesactingo nthestructu ure;then 5. Designthep designa3dmodelforth heentiresolaarsystemusingSolidWorkssoftwaree. mount of ele ectricity prooduced by the system and a comparre it with th he actual 6. Find the am electricityco onsumedbyytheuniverssity.Then,prrepareacostanalysisreeporttoestim matethe costsofinsttallingthesyystem,andeevaluatethe benefitsofimplementinngthisproje ectfor25 years. hrain Prosp pective: 1.4 Bah TherearremanyfacttorsmakeBa ahrainanideeallocationfo orimplemen ntingsolarennergyprojects:  Thepeaken nergydemandinBahrain occursinJuly,Augustan ndSeptembeer;duringth hisperiod the solar paanels producce the maxi mum electricity, and he ence reducee the load on o power stations.[13 3]  Bahrainhas longdayligh hthoursdur ingthesummer(thesolarsystemcaanoperateforalong timeduringpeakconditions“highteemperature””).[13]  Theenviron nmentalcond ditionsproviideanadditionalfeature etoBahrainnsuchas,theannual averagequaantityofrainsandcloudssislowandaalsothereisnosnowdurringwinter.[[13] ehighestsolaarpotentialintheworld.Basedonthheannualin nsolation,  Bahrainhassomeofthe d the Gulf region have some of the highest so olar potentiaal in the wo orld; the Bahrain and annualaverageglobalsolarradiatioonwhichisaavailableto photovoltaiccpanelsisestimated atabout219 92KWh/m peryear.B Basedonthissamountofsolarradiatiion,ifaland dwithan areaof8Km m coveredw withphotov oltaicssolarpanelswith anefficienccyof20%;anenergy of3.5GWh couldbe prroducedeveeryyear[14].However,tthesolarpootentialsare notwell B as shown belo w till 2013 Bahrain did d not produ ce energy from f any utilized in Bahrain; renewable source. Thiss means Ba hrain has an a issue reg garding utilizzing the benefits of renewableeenergy(solarrenergy). Taable3,Installed dcapacityinBaahrainbytypessofgenerationinmegawatt[224]

Yeaar Steam

Gas

20113

700

100

mbined Com Dieesel Coal Hydro Wind Solar Others Total T Cycle 3134 00 0 0 0 0 0 3934 3

Inad dditiontoth heavailabilityyofhydroca rbonfuelsin nBahrainandGCC(menttionedinsecction1.1, seepictu ure3);thereearefurther reasonsexpplainwhyBahrainisstilllaggingbehiindintheap pplication of renew wable energgy such as, lack of inform otential of ssolar energy and the mation regaarding the po suitabletechnologieesthatcanbe eappliedintthisfield,lacckofindustrialmotivatioon,lackofkn nowledge and exp perience of local enginee ers and techhnicians, the e solar energ gy requires relatively high initial

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2 21of202 capital(installation,maintenance,andlabor rcharge),low wcostofcurrentelectric ityinBahrain,lackof plansandcleaarregulation ns,lackofgoovernmentsu upporttoen ncouragepeoopleusingre enewable futurep energyssourcesand lackofawarenessofpuublicinvestors,peopleandespeciallyydecisionm makersof theadvaantagesofussingsolarenergy.[15]

Figurre3,ShareoffOrganization nofArabPetrroleumExportingCountries(OAPEC)inw worldfueloill.[16]

Eneergydemand dinBahrain(Electricitycconsumption n): The rapid growth in popula ation and ecconomic led d Bahrain to o experiencee a very high h annual mand of electricity; the demand waas increasing g by a rate oof 8 % from 2000 to increasee on the dem 2005,an ndby11%ffrom2005to o2011(the peakelectriccitydemand dreachedto 2,812Mega aWattin 2011) aas shown beelow. With the continuuously incre easing powe er consumpttion; the ge enerating capacityy has to be doubled evvery decadee, and by ye ear 2021 the electricityy demand would w be between n(4,000to5 5,624Megaw watt)[14].ToocoverthisdemandBah hrainneedsttoburnfurth herfossil fuels,an ndhencepro oducingmore egreenhoussegases(esp peciallyCO2).Furthermorre,85%ofe electricity in Bahraain is producced using na atural gas; ssince, the re emaining (15 5 %) is produuced using oil. o As a consequ uence that Bahrain B is a small produucer of natu ural gas; the e rising ratess of extraction have resulted d in a large decrease d in gas reservess (in 1990 the natural gas g reserves in Bahrain were w 6.5 trillionccubicfeet;in2002thereservesfelltoo3.25trillion ncubicfeet)..[15]

Figurre4,electricittyconsumptioonandgenerrationinBahrain(2000to22011)[13]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2 22of202 

Theeffectofele ectricityconssumptiongrrowthonCO O2emission: w shows carrbon dioxidee emission (CO2) in Bah hrain (Millionn ton per ye ear); it is The graph below missionsareincreasinginnahighrate e.ThestatisticsshowsthhatGCCcoun ntriesare obvious thatCO2em op14percap pitaemitterssofcarbonddioxideinthe eworld.[17] intheto

Figurre5,BahrainCCO2Emission ns2005–2009 9[11]

Assshownonpiccture6;betw ween10couuntrieswith similarcharacteristics,BBahrainrankked4thin 2005,20007and2009.Bahrainexperiencea veryhighCO O2emissionratepercappita,whichissactually asaresu ultofhighenergyconsumptionper capita,and approximate ely100%fosssilfuelbasedenergy generatiioncapacity..[17]

F Figure6,CO2 emissionrateepercapitain n10differenttcountries[177]

Enerrgyconsump ptionpersecctorinBahraain: Annually the peeriod from April A to Noveember the people p in Ba ahrain spendd most of th heir time buildings in which the electricity e coonsumed pe er house typically becoomes three times in inside b compariisonwiththeewintermonths.Asshoownonpictu ure8,andacccordingtoEElectricityan ndWater Authoritty (EWA) staatistics, the highest amoount of elecctricity load in Bahrain is consumed d by the residenttialsectorab bout56%followedbythhecommerciialsector28 %andthentheindustriialsector 15 %. TThe air conditioning systtems for ressidential and d commercia al buildings in Bahrain consume c about 665 % of elecctricity. The mechanical cooling sysstems and the buildingss in Bahrain are not energyeefficient,and dBahrainne eedstohaveesustainable ebuildingde esignsthatcaanreduceth heuseof fossilfuels.Thesolaarparkingsyystemcanheelpinachievvingsustainablebuilding gdesigns,andcanbe g, homes paarking, supermarkets implemeented in anyy parking arrea such as, for universsities parking parking,stadiumspaarking,minisstriesparkingg,companiessparking,etcc.[18] PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2 23of202

Figure7 7,ElectricityCConsumptionbySector(20 007)[19]

BahrainCO2Em missionsfrom mFuelCombbustion:

Figure8,Bah hrainCO2EmiissionsfromFFuelCombusttionin2009bySector(millliontons)[20]

Pictu ure7showsthat35%ofcarbondio xideemissio ons(8million ntonofCO2 )inBahrainarefrom electricitty and heat production.. This meanss that the re esidential and commerciial buildings produce about299.4%ofthetotalCO2em missionsinB Bahrain(producingatota alof6.9millliontonofCO2).This means if 30 % of th he fossil based energy iss replaced by b a solar en nergy; the CO O2 emission ns will be d by 2.1 milllion ton annually whichh will help in reducing global war ming and th he other reduced hazardo ousgases. Asaaresultofhighcompetittioninthessolarmarkett andmany newcountriies enteredtthe solar industryyespeciallyC China;theco ostofsolarsyystemsdrop ppedmoreth han75%com mparedtoth heprices in2008 [20].In201 14,theprice ofoildropppedby50%,andin2015thepriceiisstilldropp ping.[21] Howeveer,85%ofeelectricityin Bahrainispproducedusiingthenaturalgaswherrethepricessdidnot change. The efficiency of solarr system is continuously increasing g; the picturre below sh hows the expectedimprovem mentofefficie encyofdiffeerenttypeso ofphotovoltaicssolarpaanelsintheffuture.It shows tthat the effficiency of monocrystaalline and polycrystallin p ne would bbe 25 % an nd 21 % respectivelyintheyearsbetwee en2020and 2030.

Figure9,theexpectatiionofphotovvoltaicsefficie encyimprovementinthefu future[22]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2 24of202 

Turn ningpoint: ReceentlyBahrainandthere emainingGCCCcountries haverealize edthatdepeendingonoillandgas will not be a solutio on due to sh hortage of reesources and environme ental impactts especiallyy the bad effectso ofemissionsofgreenhou usegasesontheenvironment.These ecountrieshhavestartedseriously investigaating their potential p in solar energyy, and have put plans fo or implemennting solar energy e in whichreeplacingthe energyprod ducedbyfosssilfuelsbyrrenewableso ources.The picturebelo owshows the exp pected amou unt of energgy that wouuld be produced using renewable energy sourrces; the nsofBahrain nshowthat inyear2020 05%ofthetotalenergyywouldbep produced strategiccfutureplan usingso olarenergy(includingsola arenergyanndwindenerrgy).[18]

Fiigure10,rene ewableenerggyproductionplansforGCC Ccountries[118]

The percentage 5%looksre elativelysmaallcompared dtotheavailabilityofso larenergyin nBahrain hrough savin ng environm ment from ha azardous and the benefits asssociated witth using sol ar energy th ns, reducingg the costs of producinng electricity for long term plans especially with w the emission expectedincreaseofthepricesofelectricityyinBahrain(2016),thee expectedinccreaseinthe demand t populatio on growth a nd also the continuouss decrease i n the costs of solar on electtricity due to photovo oltaic system ms where no owadays thee costs of photovoltaic p c systems haas become close to electricittyproducedusingfossil..Bahrainshoouldinvestm moreinsolarrenergytouutilizethebe enefitsof sunlight.[18] BaseedonBahrainSocietyofEngineerinng (BSE) the engineerssh houldstrive tocontributeinthe development and im mplementatiion of their own and the engineerin ng professioon's knowled dge, skills mittedinimprovingandsavingtheeenvironmenttthrough ouldbecomm andexpertise;theengineerssho he natural resources efficiently. TThis can be achieved by using or developing new using th environm mentally frieendly metho ods for produuction or co onstruction. The T “Photovvoltaic Solarr Parking System study, analyysis and imp plementationn” project play an impo ortant role inn helping Ba ahrain to gatesforinvvestingmore einsolar furtheraapplytheprrinciplesofssustainableddevelopmentt,opentheg energyaapplications throughpro oposingnew wtechniques ofapplying solarenergy gywhichcanbeused for indu ustrial, comm mercial and residential applicationss; also, analyyzing the suuitability of the t solar parking system in Bahrain and evaluatingg the syste em in termss of costs ((saving mon ney) and environm ment.Thisp projectaimsttomotivate thegovernm mentandthe edecisionm makerstoinvestmore and putt appropriatte regulation ns for solar energy, and support people p for bboth residen ntial and commerrcial applicattions. Through this projeect, a design n will be pro ovided incluuding the me echanical devices that will bee used in capturing sola r electricity,, the structu ure of the paark and a list of the d electrical componentss for the pproposed sysstem; this would w be uuseful for en ngineers, required techniciaansandanyinterestedp personwhow wouldliketo ouseorlearn naboutsolarrenergy.[13 3]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2 25of202 1.4.1 Prroject beneffits for Bahrrain:

ImpactsandbenefitsofthisprojjectforBahrrain:  Bahrainisa smallcounttry;theland isnotavailableinmanyyareas;insttallingsolarp panelsin ndswouldbe eimpossible inmanylocationsandcostlyaswelll;themainb benefitof separatelan solarcarparrkingsystemisutilizingeexistingparkiingareastogeneratefurrtherelectriccity.  Implementin ng this pro oject has im mportant cllimate chan nge benefitss through reducing emissionsesspeciallycarb bondioxide CO2.  Thedrivers willdecrease etheuseof air‐conditioning(becaussethevehicllewouldreq quireless ooldown),re esultinginbeetterfueleffficacyandreducedemisssions. energytoco  During operration, the solar s parkingg system pro oduce zero emissions; tthis means the t solar parkingsysttemiscleane erthannorm malpowersittuationsthatworkbaseddonthecom mbustion offossilfuels.Thiswouldimproveppublichealth handlocalenvironment throughred ducingair pollutants.  In addition to that solar energy is sustainable; it is renewable as welll. With the expected e c decrease off the costs of solar increase of electricity costs in Baahrain and continuous he photovolttaic system would w provid de an alternnative for production photovoltaicc devices; th withveryco ompetitiveprriceforBahrrainsociety(wouldsavem moneyforloongtermplans).  Thesolarcaarparkingsystemisdesiggnedbased onBahraine environmenttandlocatio onwhere it would prrovide the maximum m ppossible pow wer output and the sysstem would provide protectionfromthesun andrain. uld lead to rreduce the consumption c n of fossil fuuels in Bahrrain. This  Using solar panels wou could help in increasingg the econoomy because e reducing the use of fo fossil fuels will w allow additionalexxportsofoilandgaswhi chismorevvaluableonw worldmarkettsthanBahrain.  Producing the electricityy from solarr panels do not requiress water for their operattion, and otpolluteorstrainthew aterresourcces.[23] hencedono ect would bee a silent producer of energy e wherre there is no noise  The solar parking proje mthepanels whileconve ertingsunligh httoelectriccity.[20] wouldbeprroducedfrom mentingthis project;thisprojectwo ouldreduceCCO2emissio onsby40  After25yeaarsofimplem metrictons. 1.4.2 Prroject beneffits for Bahrrain Polytecchnic: Implemeentingthisprojectwould dhavemanyybenefitsforrBahrainPolytechnic:  Afullstudyaboutimplementingasoolarparkingsysteminsid dethecampuuswasprepa ared;this studywould dsavethousandsofBD insteadofre elyingonexpertsfromooutsideford doingthe researcheso only.  Thesolarpaarkingsystem mwouldopttimizetheap ppearanceofsolarparki ngareaandbecome animportan ntarchitecturalfeaturefoorBahrainPolytechnic. e entire struucture was prepared p for Bahrain Pollytechnic by Al‐Zamil  A real quotaation for the Company (ssteel designing and mannufacturing Company). C Bahrain B Polyttechnic can contract with this company to sh hade the pa rking area only o (if the mangers m do nnot want im mplement thisproject).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2 26of202 1.4.3 Prroject beneffits for engin neering dep partment:

Benefitssofthisprojeectforschoo olofengineeeringandBah hrainmechanicalengineeers:  Afulldesign nofthestructure(with theoptimum mdirectiona andtiltangl e)isprovide edtothe students\meechanicalen ngineers;thissprojectrep presentsthe guideforappplyingsolarparking projects.  Further reseearches can be done inn the univerrsity after th his project iincluding researches aboutoptim mizingthestrructureofthheparkingsyystem,vibrattionanalysiss,designinge electrical circuits,meaasuringsolarrirradianceeexperimentaallyandcostanalysissoffurtherstudentsand tutorswould dbemoreexxperiencedinnsolarparkingfield. 1.5 Cha apters summ mary: Theefollowingch hapteristhe eoreticalmetthodology,aanalysisandd design.This chapteranalyzesthe problem m and presen nts the methodology stteps required to solve this problem m with all theoretical aspects.Thischapteerstartswith hexplainingaalltherequiredstepstodesignaso larparkingssystemin nctions,typees,compone entsandsele ectioncriteriaaforPVcellsandPV Bahrain..Then,itdeffinesthefun solarsysstems, and it i shows the e selection c riteria for module m type. Furthermorre, it analyze esall the methodologysteps indetailstarrtingwiththherequiredp parametersa andtheoreti calaspectsttodesign ngle,tiltanggle,latitudeaangleandaltitudeanglee),movingto oparking thesystem(suchass,azimuthan a design (such as prresenting some theoriess of Mecha nics, presen nting the structure analysis and dsthatwillb beusedtod determinethhewindload dsandthecataloguesthhatwillbeused)and standard ending aat system performance analysis thrrough showiing the form mulas and stteps to calcu ulate the electricittyproducedbythesyste em,theprojeectcostsand dsavings. The followingch hapterisresultsanddisccussion;itprresentsallth hecalculatioonsandanalyysisused t theoreticcal aspects eexplained in n chapter to desiggn the solar parking systtem (it impl ements all the two). Th his chapter uses u differen nt methods to interprett, analyze an nd compare the results such as, tables, ffigures, charrts, free bod dy diagrams,, decision matrices m and online calcuulators. Thiss chapter startswithselectinggthetypeof,,solarcell(ppolycrystallin ne,monocrysstallineorthhinfilm),sola arsystem (“off griid or grid tiied” and “b battery‐less oor battery based b system m”) and sollar module by using decision nmatrices.A Also,itdetermineswhe thertouse ornotatrackingsystem m;thenitse electsthe finaldessignforthe parkingstructurefromssetofoption ns(4optionss)throughccomparingth hepower outputs and advan ntage and disadvantagees of each option o with consideringg design co onstrains. more,itcalculatesthesttressesonthhepartsofth hestructureusingmechaanicsandFE EA,andit Furtherm presentss3dmodelfforthefinaldesign.Fu rthermore,iitcalculates theelectric itygenerate edbythe proposeed solar systtem, it com mpares betw een electriccity produced with elect ctricity consu umed by Bahrain Polytechnicc and it estim mates the prroject costs for 25 yearss. Finally, it presents the e project impactsintermsofccosts(savinggs)andenvirronmentalasspectsforthe efirst25yeaars. The last chapteer is conclusions and re commendattions; it show ws all the m main findinggs of this withseveralrecommend dationstoim mprovetheprojectinthe future. projectw

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2 27of202

ChapterTwo–The eoreticalmethodologyy,analysis& &design: 2.1 Intrroduction: Thisschapterstartswithintro oducingallthherequiredstepstodesign,analyze andthenim mplement odology). The en it explainns all the theoretical a solar parking systtem for Bahrrain Polytec hnic (metho aspects (designing and a analyzin ng) separateely in more detail. The findings of this chapter will be pter. implemeentedintheresultschap 2.2 Step ps to design n a solar pa arking systeem: Thefollo owingstepsw werefollowe edtoanalyzee,designand dimplementtthesolarpaarkingsystem m:  Step1(anaalysisandde esign):Explaainingthethe eoreticaland ddesignasppectsforpho otovoltaic solarparkinggsystems;th hisincludes: 1. Expllaining how the solar syystem produ uce electricitty, the differrence betwe een solar cell,moduleand darrayandtthecriteriausedtoselecttthetypeoffsolarcell. 2. Show wingthetyp pesofsolarssystems,theadvantages anddisadvaantagesofea achtype; then nexplainthe emaincompponents.Also o,definingandcomparinngbetweeninverters typees. 3. Stud dyingthemo otionofthe eartharoun nditisaxiso ofrotation,aandtheeffe ectofthe orientation of the parkingg structure on the amo ount of solaar irradiance. Then, e optimum oorientation for the structure with tthe panels based b on deteermining the locaation of Bahrain (design option 1). Also, proposing two furrther design n options baseedonthedirrectionoftheeparkinglotts. 4. Expllaining the parameterss required to t design a a solar systtem (latitude angle, decllination angle, etc.). Theen, studyingg the relation between tthe motion of earth relativetothesunandthettiltofthepaanels.Finallyy,findingtheeoptimumtiltangles forp parkingstrucctureinordeertousethemifpossible e. 5. Deteermining the e methods uused to calcculate the so olar irradiancce and seleccting the avaiilableandmo oreaccurateemethod(on nlinecalculattors). 6. Show wing Bahrain guideliness for the design of off‐sstreet car paarking facilitties then show wingmethod dsthatwillbbeusedforcalculatingdimensionsanndnumbero ofparks. 7. Expllainingselecttioncriteria formodulessmanufacturrer(type). 8. Expllaining the theory t of m mechanics an nd different terms thatt will be use ed while calculating stresses on thee structure (purlin, crossbeams, coonnection bolts b and umns). colu 9. Defiiningfivefacctorsthatwiillbeusedtodetermine eFactorofsaafety.Then, defining thewindload,andlistingtheerequiredsttepstoestim mateit. 10. Find ding the available steeel sections in Bahrain, then deterrmining whiich steel cataaloguesthatwillbeused . 11. Expllainingthem methodofjo iningcrossbe eamwithcolumns.Thenn,explaininghowthe structurewillbe emodeledanndanalyzedusingcompu uteraideddeesign. he power pr oduced by the t system can c be calcuulated and exxplaining 12. Defiining how th the factors thatt effect on the perform mance of th he system (ssteps for ca alculating perfformancered ductionfactoor).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page2 28of202

plaining how w the projecct savings can c be calculated, andd explaining how to 13. Exp calculatethetottalcostofth eproject. Step2(imple ementation)):allthetheooreticalaspe ectswillbeim mplementeddinstep2: 1. Seleecting solar cell type (ppolycrystallin ne, monocryystalline or thin film) by using deciisionmatrix. 2. Decidingwhethe ertouseornnotatrackin ngsystem. m (off grid or grid tied) and (batterry‐less or 3. Seleecting the tyype of the ssolar system battterybasedsyystem)usinggdecisionmaatrix. 4. Analyzingdesign noption1,22,and3;the encomparing gbetweent hepowerou utputsof h design. Finally, F seleccting the optimum o design optionn that provide best each com mpromise(de esignconstraains)andmaximumpowe eroutput. 5. Deteermining the e height of tthe structurre (column) based on thhe selected tilt t angle andBahrainparkingguidelinnes. dimensionsooftheparks,,andthense electingsolaarmoduletype(from 6. Meaasuringthed seto ofoption)th hatwouldbeecompatible ewiththeparkingdime nsionsandb basedon mod duleselectioncriteriausiingdecisionmatrix. 7. Calcculating wind d load. Thenn, calculatingg factor of safety and coomparing it with the reco ommendedffactorofsafeetyforsteelsstructures. 8. Decidingwhethe ertouseapparkingstructturewithfou urcolumns( designoptio onA)ora B). parkkingstructurewithtwoccolumns(dessignoptionB 9. Calcculatingthefforcesactinggonthestruccturecompo onentsasmeentionedbelow: alculateloaddsonpurlinss: Commonstepstoca  Find dingresultantforceactinngonthestru ucture.  Skettchingshearforceandbeendingmom mentdiagram m.  Find dingthemaximumbendi ngmoment..  Calcculatingsectiionmoduluss(Z).  SeleectingthesuitablesizefroomAl‐Zamilcatalogue.  Find dingthevonmissesstresssandcompaareitwithallowablestreess. alculateloaddsoncrossbeams: Commonstepstoca dingresultantforceactinngonthestru ucture.  Find  Skettchingshearforceandbeendingmom mentdiagram m.  Find dingthemaximumbendi ngmoment..  Calcculatingsectiionmoduluss(Z).  SeleectingthesuitablesizefroomAl‐Zamilcatalogue.  Find ding the com mbined stre ss (axial and bending) and compa re it with allowable a stress. alculateloaddsoncolumn ns: Commonstepstoca  Seleectinganinitialbeamsizeefromthecaatalogue.  Deteerminingthe eaxialforce.  Calcculatingtheccompressivestress.  Calcculatingtheb bendingmom ment(ornettbendingmo oment).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

29of202 Page2   

ecombinedccompressivestress. Deteerminingthe Com mparingtheccombinedstrresswiththe eallowablesstress. Find dingthemaximumbuckliingstress.

Stepsto ofindsizean ndnumberoofthebolts:  Choosinganinitialsizeforthhebolts.  Choosinganinitialnumberfforthebolts..  Calcculatingthesshearstress oneachboltt.  Calcculatingthettensilestresssforallboltss.  Find ding maximu um principlee stress for the bolt tha at exposes tto maximum m tensile stressusingMoh hrcycle;the ncomparinggthisstressw withtheallow wablestresss. Stepsto odeterminethesizeoft hefooting(ffoundation):  Find dingthemaximumaxialfforceonthefooting.  Calcculatingtheffootingsizetthroughusin ngFEMAstan ndardequatiion.  Choosingthesta andarddimeensionforthefootingthatisequaltooorgreaterthanthe ngsize. calculatedfootin deling the components of the parkking structure using Soli dworks. The en, using 10. Mod Solid dworks FEA A to calcula te the stre esses. Finallyy, comparinng calculatio ons with Solid dworksvalue es. 11. Calcculatingpowerperforma ncereductio onfactor(PF). 12. Calcculating the total area of photovolltaic module es. Then, caalculating the power prod ducedbythe esystemmoonthlyforthe efirstyear,andtotalpoowerproduce edinthe firstt25years. 13. Calcculatingcostoftheelectrricityproduccedbythesyystem(savinggs)for25years. 14. Calcculatingthep powerconsuumedbyBah hrainPolytecchnic,andfinndingthepercentage of electricity e produced by y the system m to the ellectricity co nsumed by Bahrain Polyytechnic. 15. Deciding whether to use sttring inverters, central in nverters or micro invertters; and checckingthattheinverterisscompatiblewiththeselectedmodu leandsystempower outp putbyusinganonlinecaalculator. 16. Calcculating the total cost off the projectt (25 years), and then ccomparing th his figure with htheprojectsavings. 17. Find dingthetotalcostofthe project.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page3 30of202 2.3 The e mechanism m of Photov voltaic (PV V) solar systtem (mater rial science)): PhottovoltaicissshortforPho oto(thephootonsorlightt)andvoltaic(thevoltaggeorelectriccity).The photovo oltaiccellsarremanufactu uredfroma semiconducctormaterials(typicallySSiliconSi)miixedwith otherelementswheereifexpose edtosunlighht(thelightp particles“ph hotons”)the cellwillgen neratean o explain ho ow the systeem produce e electricity let us first explain the e atomic electric current. To structureofsilicon(Si)andthestructureofssolarcells:[2 24] 2.3.1 Attomic structture of silico on (Si): The atomicnum mberofSilico on(Si)is14w where14ele ectronsareo orbitingthe nucleus(arrrangedin PartA)two electronsarrelocatedinthefirst threedifferentshellls).Asshownonthefiguurebelow(P dintheseco ondshell(tw woarelivinginthe2S shell(livvinginthe1SSorbital),eigghtelectron sarelocated andsixiinthe2Porb bitals)andfo ourelectronssarelocated dinthelastsshell(valanceeoroutersh hell).The first and d second sheells that hold d 2 and 8 ellectrons resp pectively are e completelyy full; since the t third shell(ou utershell)is onlyhalffu ull(justfour electronsfro omapossible8holes).TThesilicona atomwill striveto ofillupitslastshellthroughsharing electronswiithfournearrbyatomsle adingtoformapure crystallin nestructure(eachatominthestructturebondsw with4otheratoms)(parttC).[25] Figure11,A)SSiliconatomicnumberB)Siiliconvalence eelectronsC)SiliconCrystaallinestructure[24]

Theproblemofpurecrystallinesiliconittisabadcon nductorduetononeoftthevalencee electrons arefreeetomoveab bout.Ifenerrgy(in aform mofsunligh ht)isaddedttotheSilicoon;theenerggywould knockth heelectrons freeofthe crystallines tructure.Thisprocessneedsmucheenergyandp produces veryfew wfreeelectrrons(verylitttlecurrentfflow).Toaddressthisisssue,impurittiesareadde edtothe siliconin nordertoincreaseitscurrentcarryinngpropertiess;thisprocesssiscalledd oping.[26] When Silicon iss doped with h compoundds that contaain one morre valence e lectrons tha an Silicon uchasPhosphorous(contains5electtronsintheo outershell);4electronsaarerequired dtobond does,su with thee 4 adjacentt silicon atoms and thee fifth valencce electron is available for conducttion. The resultinggsiliconiscaalledN‐type(Nfornegattive)whichissamuchbettterconduct orcompared dtopure Silicon.SSince,ifthe pureSiliconisdopedwitthcompoun ndsthatconttain1lessvaalenceelectrronsthan Silicond does,suchassBoron(conttains3elect ronsintheo outershell);3electronsaareavailable etobond withfou uradjacentssiliconatomss.Thus,aninncompletebond(hole)existsthatca nattractanelectron froman nearbyatom m.FillingoneholemakesanotherholeinadifferentSiliconaatom;thismovement ofholesisavailableforconduction.TheresuultingsiliconiscalledP‐tyype(Pforneegative).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page3 31of202 Figure12,P‐‐typeSilicona andN‐typeSillicon[24]

Wheen N‐type and P‐type Silicon S are pplaced in con ntact with eachoth her(asshow wnonfigure1 13andfiguree14layerDandE);an electric field(orapositive‐negativejunctionn‘PNjunctio on’)forms. ethatallowsstheelectronstoflow ThePN junctionactsasadiode fromtheenegativesiideofthecelltothepossitivesideofthecell.If energy is added to o N‐type silicon there are a lot more m free nspresentw withinthestrructurecaussingthefreeelectrons electron in the N N‐type silico on to rush towards t thee holes in the P‐type Figure13,P PNjunction[2 29] silicon,w whichcreateesacurrentfflow.[27][288] Thetablebelow wshowsthesstructureofssolarcells: Table4,SSolarCellStru ucture[27] psulate:typiccallymadeo ofglass;itisuusedtosealthecellsfromoutsideennvironment. A Encap B ContaactGrid:mad deofagoodconductor((metal);itwo orksasacolllectorofelecctrons. C AntireeflectiveCoaating(ARCoa ating):thiscooatinglayerhelpstoguid dethelightiintothesolarcell. D N‐Typ peSilicon. E P‐Typ peSilicon. F BackContact:am metalusedto ocoverthew wholebacksurfaceofthe esolarcells.

Figure114,SolarCellSStructure[27] 2.3.2 Su ummary of tthe electriciity productiion process::

 

 

Thee energy fro om sun (ph hotons) excittes the elecctrons locatted on the solar N‐type silicon pro ovidingthem mthevoltagetomove. If tthe solar cells are connected to a load; the exxcited electrrons wo ould start moving m (curre ent flow geenerated) from the N‐ttype siliccontotheP‐‐typesilicon.. NowtheelectrronsfromN‐typegotothheP‐typesid deandcomb bine onholes. witththeelectro As the sunlightt continues striking thee cell; furthe er electrons are sen ntthroughth hecircuit,an ndtheelectrronsarepushedfromtheP‐ Fig gure15,themovvementof typ pebacktotheN‐typethrroughthePN Njunctiontocontinuetheprocess.[229] electrronsthroughthe ePNjunction [

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

]

Page3 32of202

2.4 Sollar cell, mod dule, panell and array:: The solarcellis thesmallestcomponenntofthesolaarsystem;ittisresponsibbleforcollectingthe sun eneergy (sunlight or photons) and convverting it to a direct current (DC eleectricity) tha at can be usedtorunthesysteemloads.[30] Table5,thediffereencebetween npanelandm module

PVmodule Thesm mallestcomp plete environm mentallypro otected assemblyofinterconneectedsolar cellsconn nectedinserries.[30]

PVpanel Groupoofmodulesffastened togetherr,pre‐assem mbledand wiredand designedtoworkasan installableeunitinanaarray.[30]

PVarray Amecchanicallyinttegrated assemblyyofmodulessorpanels. [30]

Figure16,ce ell,module,ppanelandarra ay(fromcellttoarray)[31]

2.5 Sola ar Cells types: The photovoltaic solar cells can be classsified based d on the wayy of S waferrs (manufacctured throu ugh cutting the manufaccturing to Silicon wafersffromasolid ingotblocko ofsilicon),a ndthinfilmtechnologies(a thinlayeerofasemi‐conductorm materialispuutonalowccostsubstrates). The Cryystalline waffers have high efficienccy, but theyy are relativvely costly tto manufactture. Thin film cells aare cheaper because the materials used aree inexpensivve and the manufacturring processs is hinfilmcellsarelesseffi cient.[32] simpler.However,th owsmajortyypesofPhottovoltaicSolarCells: Thetabllebelowsho

Figuree17,TypesoffsolarCells[3 33]

Taable6,MajortypesofPhottovoltaicSolarCellswithbriefinformatiion

Monocrystalli ne(Singlecrrystalline)Ce ells The mono ocrystalline cells are ma ade in long cylinders and sliced into o round orr hexagonal wafers. Thhis process is energy‐inttensive and wasteful of materials, bbut it producces thebestso olarcellefficciencybetwe een15to20 %. The mono ocrystalline is the secon nd common type in solar global market, and it’’s the most expensive ssystem due to ufacturingprocess.[33] thecomplicatedmanu ocrystalline cells are mo ore efficientt compared to The Mono polycrystaalline becau use the in nter‐gain bboundaries in Figure18,SiinglecrystallineCells[33] w. polycrystaallinecellsinttroduceresisstancetotheecurrentflow PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

33of202 Page3 Po olycrystallinee(orMulti‐C Crystalline)ce ells 

 

The Polyccrystalline cells are ma anufactured from moltten siliconcastintoingotssordrawnin ntosheets,t henslicedin nto squares so o they can be b packed closely c togetther creatingg a module.[99] The produ uctioncostissalittlebit lowercomppared toMono crystallinee; the efficiency of the cells is lowerr also betwe een 12to15% %. Polycrystaalline modules are the most comm mon solar tyype 4] usedintheemarket.[34

Figure19,Poolycrystallinecells[34]

TThin‐filmCells      

They are manufactureed through depositing oone or several ductormate erialontoasuubstrate. thinlayerssofsemicond Thin‐film solar paneels are cattegorized thhrough whiich photovoltaaicmaterialisdeposited ontothesu bstrate: Amorphou ussilicon(a Si). Cadmiumtelluride(Cd dTe). Copperind diumgallium mselenide(CIS/CIGS). Thin film cells provid de a cheaper alternativee but are le ess efficientabout7to13%.[33]

Figu ure20,ThinfillmCells(Amo orphous)[33]] election facttors for the ttypes of sol ar cells: 2.5.1 Se Thesolaarcelltypew willbeselecttedusingaddecisionmattrixbasedon nfivefactorss: 1. Theavailabilityinmarke et. 2. Thesystemefficiencywhichistheppercentageo ofconvertingthesunlightttoelectricittybythe cell.Itisoneeofthemosttimportantffactorsthatshouldbeco onsideredwhhileselectinggthecell typewhere thehighere efficiencyre presentsthe eoptimumo option(prodducesmorep poweror requireslesssarea). 3. Temperaturecoefficienttforpower; thiscoefficientisbased donthetem mperatureoffthecell (atStandard dTestCondittion(STC)whhichisequallto25 an ndtheambieenttemperatture;this coefficienth hasanegativvesign.Itis usedtodetterminetheincreaseorddecreaseof thecells efficiencywhereifthetotaltemper atureoftheCell(Cell+a ambienttem mperatures"T T ”)is greater than n 25 the efficiency off the cells will w drop, and d vice versa.. To find the e drop or increaseinssolarcell’seffficiencythe followingfo ormulaisused:[35] η η 1 Teemperature coefficient K 25 T

η

K 25 T → 1 W Where, ncyofthemoodule(efficie encydropor increase“coorrectedefficiency”).  η :Acctualefficien  η :Theefficien ncyofthemooduleatSTC.  K:Tem mperatureco oefficientforrpower.  T :TottalofCell+a ambienttem mperatures.[36] 4. Cost;thelow wercostisth heoptimum optionespeciallyforlarg gescaleprojjects. meinorderto ogetthe 5. Lifespan,theesolarcellsshouldbed urableandccanbeusedforlongtim moneybackkespeciallyittisalongterrminvestme ent.

η

1

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page3 34of202 2.6 Sola ar systems types:

Figgure21,typessofPhotovolttaicSystems[[32]

AssshownontheeabovediaggramthereaarevarioustypesofPhottovoltaicSysstems;these esystems are classsified into two t main ca ategories, a Grid‐tied systems and Off‐Grid syystems. The Off‐Grid systemsarenotcon nnectedwith htheGrid‐uttilitywheretthepoweris eitherconsuumeddirecttlybythe orsavedintthebatteriess.Since,the Grid‐Tiedsyystemsareconnectedw withtheGrid utility;if systemo thesysteemisnotpro oducingsuffficientpowerrtheelectriccityfromthe egridisusedd,andifthessystemis producin ngpowermorethanthe erequired;tthesystemssendstheexxtrapowertoothegridle eadingto force th he utility meter to run backward. b Onne more Griid‐tied system called Staand Alone syystem; it an be emp loyed for emergency e backup pow wer. Based on the containss a generattor that ca requirem mentsofBah hrainPolytecchnicthebesstsystemwilllbeselected d. 2.7 Grid d‐tied batte ery‐less:

Fiigure22,com mponentsofG Grid‐tiedsyste em(batteryfreesystem)[337]

Pictu ure 22 show ws the configurations off a Grid‐tied d battery‐lesss system; w when the solar array collects thesun'sen nergyadirecctcurrent(D DC)isproducced.Allthe DCcablesfrromthemod dulesare c box; the combbiner box agggregates the separate current flow ws into a connected with a combiner oved from the combineer box throu ugh a DC single high amperagge DC circuit. The DC ppower is mo ersotheDC powerisconvertedtoA ACpowereleectricity.The entheAC disconneectbreakerttoaninverte electricittyflowsthro oughanACd disconnectbbreakertoan nACpowerp panel,andfinnallytheelectricityis availableetotheload dorpowergrrid[27][28]..Thesystemconsistsoftthefollowinggcomponents: 1. Pho otovoltaic(P PV)arrays. 6. 6 Ameter. 2. Com mbinerbox. 7. 7 A utility interconnecction across a circuit breaker inside tthe MDP (main 3. AD DCdisconnecctbreaker. distributionpanelorrmainutilityybreaker 4. Aninverter(ormore). panel‘picturebelow’’).[29] 5. ACdisconnectss.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page3 35of202 The Grid‐tied battery‐less system s requuires less nu umber of components ccompared to o battery more cost efffective, the system is siimpler in de esign and based syystem. This means this system is m installation, the systtem energy output is grreater (the more m compo onents used in the syste em is the withalesseefficiency)an ndthesyste mrequirele essmaintena ance.Howevver,thissysttemdoes systemw not provvide backup power during power‐cuuts; it is the optimum syystem for sittes with reliable grid power.[[29] 2.8 Grid d‐Tied with h Battery Ba ackup (Hyb brid): The Hybrid (Grid tied + Batttery‐based) systems can export power to the Grid and ch harge the batteries or supportt the load; the t hybrid syystems use more m compo onents comppared to batttery less systemaasshownonthelistandpicturebeloow: oltaic(PV)arrays. 6. Ba atterymeterring. 1. Photovo 2. Acombiinerbox. 7. Aninverter(oormore). 3. Achargeecontroller((ormore) b 8. Abackuploaddcenter(sub diistributionpaanel). 4. ADCdissconnectbre eaker.(Twoffor eachcon ntrollerandoneforeachh 9. AnACdisconnnects. inverterr) ercurrent 10. An MDP with ove protection.[338] 5. Abatterrybank.

m)[39] Figure e23,compone entsofHybriddsystem(Grid d‐tiedbattery ybasedsystem

Assshownonfiggure23,inadditiontothhebatteryb bankseveral componenttswereadde edtothe systemllikechargeccontroller,exxtraDCbrea kerandsubloadpanel.Thisincreassestheinitialcostsof thesysteemandincreeasesthesysstemcompleexitywhiledesigningthesystemanddduringmain ntenance becausee many components nee ed to be insspected and d monitored. In this systtem a dual function inverterisusedtosu upplytheutilitygridwithhanysurplusenergygen neratedbythhesystem.A Also,this oltaicarrayaandbattery bank(contro olledbythe chargecontroller)to inverterworkswith thephotovo provide ACpowerto othebackup pcircuitsifthhegridisdo own.Thechargecontrolleerisusedto omanage the battteries voltagge, keep the batteries fuully charged if the grid iss on and preevent batterries from beingdeepletediftheesystemisd drawingpow werfromthem m.[40] The userofbattterybasedsyystemwoulddnotsufferaaboutanyproblemassocciatedwiththeutility outage (the user would have powerr when the utility u is out) [41]. Howeever, using a a backup power o battery bank to the system would leads to several issu ues such as, during chargging and disscharging me part of t he energy. This T would reduce r the eefficiency an nd power processees; the batteeries consum output o of the photo ovoltaic syste em by 10 % % (for lead‐accid batteries). Also, addiing a backup p battery

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

36of202 Page3 bank to the system m increases the t complexxity of the system s and requires moore compone ents and ncreases inittial cost, insttallation cossts and syste em maintena ance costs. A Adding battery bank hence in requiress an empty land l to store e the batter ies; also the e batteries should be inssulated from m outside environm ment. Most types of ba atteries requuire mainten nance like cle eaning and ggreasing the e battery terminals and addin ng distilled water. w Batterries are expensive and need n to be rreplaced periodically beforettheotherparrtsofthesolarsystem[227][31].Ad decisionmatrixwillbeussedtoselect thefinal systemttypebasedo ontheadvan ntagesanddiisadvantagessofeachsystem. 2.9 Maiin compone ents of solar systems:  Sysstemloads(o orappliance es): The system load ds or applia ances are alll the electrical equipme ent need to be powered d by the oltaicsystem m(BahrainPo olytechnicapppliances).Theloadsare edividedtoD DCandAClo oads;the photovo power ffrom the arrray is DC electricity. In order to ru un the equip pment that works only with AC electricitty;theDCelectricitysho ouldbeconveertedtoACe electricityussinganinvert rter.[29]  BattteryBank: Wheenthesystemrequiressstoringthessurplusenerrgyofthearrays;abatteerybackupssystemis used.Th hebenefitoffusingBatte erybankispprovidingpowertothessystemwhennthegridis offorat night (fo or Off‐grid systems). s The battery Baank is a set of batteriess wired togeether to ach hieve the specific voltageandenergycapa acitydesired .Thebatteryybankisusu uallykeptin aseparateccontainer to keep the batteriees safe. The e batteries a re connecte ed with the photovoltaicc arrays for charging them,andwithach hargecontrollerlocated inbetween (arraysandbatteries).TThechargecontroller is used to control the batteries charging annd discharging processes and the baatteries volttage. The battery bank is con nnected witth an invertter to proviide power for f the AC loads. Batte eries are h they requiire continuo ous maintena ance (cleani ng and grea asing the consumaable components which battery terminals an nd adding distilled wateer). The batteries should d be replacedd periodically where theycan nrunfor5to o7yearsifttheynotcom mpletelydisccharged(dischargedbeyyond80%),a andifthe chargingganddischarrgingiscarriedoutwithi nthespecifiedlimitsofccurrent.[29]]  Chaargecontroller: The charge controller is an electrical ccomponent placed p betw ween the phootovoltaic array and battery bank.Theprrimaryfunctionofcharggecontrolleriscontrollingthechargeecomingfromarrays oughmanagiingbatteriessvoltage,keepingbatterriesfullychaargediftheggridison tobatteerybankthro andprevventingbatteeriesfrombeingdepleteedifthesystemisdrawin ngpowerfroomthem.[42 2]  Pow werdistributionandloa adcenters: The utilitycomp panysendsp powertotheedesiredlocationthroug ghwiresthattareconnecctedwith ameterrwherethe electricalen nergyusedissrecorded. From this meter;aconn m nectionism madeto a maindisstributionpaanel(MDP)(a alsocalledthhemainload dcenter‘MLC’)thatconttainacircuitbreaker, and hen nce the pow wer is distributed from tthe load cen nter to various branch ccircuits to po ower the systemaappliances.M MostGrid‐tie edbatteryleesssystemsccontainsam maindistributtionpanel(a asshown onfiguree22).Since,theGrid‐tie edbatterybaasedsystemsscontainam maindistribuutionpanela andasub panel th hat works as a backup, and powerrs up the loaads (appliances) conneccted to pane el during powerccuts(utility).[43]  Dissconnectsan ndovercurre entprotectioon: For safetyandm maintenance erequiremennts;thephottovoltaicsolarsystemsm mustcontain nasetof disconneectsandoveercurrentpro otectionequ ipment.Thepurposeofdisconnects equipmentiistoturn thedesiiredcircuito off.Disconne ects,should locatedinplacesforsysstemmainteenanceandttoisolate

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page3 37of202 thephottovoltaicarrayandthein nverter.DCD Disconnectccanbeplaced dbetweenthhecombinerrboxand theinveerterasasprritunit;oritmaybeprovvidedwithth heinverter;since,theACCdisconnecttsshould beplaceedclosetoth hemaindistrributionpaneel.[44] Thee overcurren nt protection n devices arre equipment (such as,, fuses) thatt turn the loads l off automattically when the loads are a drawing too much current (protecting photoovoltaic strin ngs from over‐currrents).The overcurrentdevicesprootectthecon nductors(wires)frombeecomingtoo ohotand starting afire.Allarrraysthatco onsistofmo rethanfourrstringsshouldbeequipppedwithfu uses.The nominallcurrentoftthefusesho ouldbeatleeast1.25tim mesbiggerth hanthenom minalstringcurrentin order to o avoid noisee. The overccurrent proteection devices in the DC C side are opptional; since the AC sidesho ouldincludeo oneormoreofthesedevvices.[45]  Sysstemground ding: Thee grounding process ne eeds taking one conducctor from a two‐wire ssystem (posiitive and negativee) and conn necting it to t ground. Grounding the solar photovoltaic p c system ha as many advantages includin ng providingg the protecction to pe eople on site from elecctric shock risk and etosystem fault.Groun ndingthepho otovoltaicsyystemshould dinclude eliminattinganyposssiblefiredue the follo owing parts,, the array frame f and ssystem Grou unding (DC conductors c ggrounding). [46] The groundffaultprotecttionfaultpro otectionisal readyprovid dedinsometypesofinveerters.[45]  Com mbinerbox(orjunctionbox): Wheen the modu ules are wired together in series strings the ou utput voltagees increases and the current remainsthesame.Theo outputwiressfrommultip pleseriesstrringsareconnnectedtoge etherina boxcalleedcombinerrbox.Theou utputofthe combinerboxisonelarrgertwowireeconductor thatwill beconn nectedtotheeinverter.Th heconnectioonsinsideth hecombinerboxaretyppicallymade ofscrew terminals(highqualityisrequire edtoensure lowerlossesandtopreventoverhe ating).Theccombiner boxconttainsovercurrentprotecctiondevicess(safetyfuse eorbreakerfforeachstrinng).[47]

Figure2 24,wiringcirccuitfortwopphotovoltaicm modulesconn nectedinparaallel[48]

Thepictureabovveshowstw womodules( ortwoseriesstrings)connectedinpparallelinaccombiner w (black wires) are cconnected in n in the desired terminaals. A ground wire is box. Thee negative wires connectedfromtheeseterminalsstoground stripto the ground. The epositivew wires(redwires)pass through fuses to the desired te erminals. Thee green wire e representss grounding the modules; all the moduless are connected by thiss wire and tthe output wire w passes through groounding strip to the ground. Thenegativvewiresarecombinedtooabiggerwireandthep positivewireesarecombinedtoa biggerw wire. Thesew wireswillbe econnected withan inverter,andth hesystemissprotected byfuses, breaker(withtermin nals)andgro oundingsysteem.[48]  Invverter:

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page3 38of202 If ph hotovoltaic solar s module es are the h eart of any photovoltaicc solar systeem;the inverters are thebrains.Theinvertersarethe esecondmosstexpensive epartaftersolarmoduless.Thedirectcurrent (DC)electricitythatproducedbyythesolarpaanelspassessthroughinvverters,whicchtheytransformthe DCelecttricityintoalternatingcu urrent(ACe lectricity)whichisthetyypeofelectrricityusedb byhomes and bussinesses to power lightts and appliiances. The inverters are divided tto utility interactive invertersandstandaaloneinverte ers.Theinteeractiveinvertersaredivvidedtogriddirect(used dforgrid Vsystems)andbatteryb based.[49][229] directPV Grid d‐direct inverters are ussed for grid tied system m. Grid direcct inverters are classified to the following three gro oups, micro inverters, sstring inverters and cen ntral inverteers; the tablle below pes:[29] compareesbetweentthethreetyp Table7,Microinverter M r,StringinvertterandCentralinverter

Micro inverters

String inverters

Central inverters

Micro invverters are the t smallestt existing in nverter unitss; each micro invverter is con nnected to a single photovoltaic module m instead of o string of modules; tthey converrt the DC current c directly. Micro M invertters are typpically less than t 250 W W each; micro invverters can be used foor both small size and d large projects.[[50][29]

[51]]

Thestringginverteratttachesstringgsofphotovvoltaicmodu ulesfor powerouttputsranginggfrom1kW Wto15kW.TThestringinvverters are used in both small size andd medium siize residentiial and industrialapplications.[50][29]

[52]

Centralinvvertersoperrateverysim milartostringinverters,jjuston amuchlargerscale.Centralinverttersaredeployedinlargescale industrial systems, an nd the rangee size is from m 15 kW to 1 MW. [50][29]

[53]

Thefolllowingpointssshowadvan ntagesofmiccroinvertersccomparedto stringandceentralinverte ers;these pointsw willbeusedtoselectthetyp peoftheinveerterforthisp project:

Imp provedsafetty: The solarmodullesareconnectedinseriiesbeforeth heyarefedintoastring oracentralinverter. Thiscurrrentispotentially lifeth hreatening.SSince,using microinverterselimina tetheneedforhigh voltageDCwiring.This,improve ethesafetyfforbothsolarinstallersandsystemu sers.[54]  Nosinglepointtoffailure: Inm microinverteersystems,iffthereissoomethingwro ongwitheitheroneoftthesolarmo odulesor the micrro inverter; the rest of the t solar sysstem will no ot be affecte ed (still runnning) where only one module isaffected((notthewho olesystem). Since,incen ntralinvertersthewholeestringorth hewhole systemw willbeoutofserviceifth hereisafaulltinonemod duleorinthe ecentralinvverter.[54]  Optimizingpow weroutput:

Figurre25,(A)3mo odulesconnecte edwithastringginverter‐(B)3modulesconnectedwith3 microinverters[55]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

39of202 Page3 Pictu ure25show wstheexactssameconfiguurationofthreemodulessthatareconnnectedwith hastring inverter (part A) an nd with micrro inverters (part B). Sh hading has covered c onee of the PV modules leading to reduce the t power of o this moduule from 215 5 watt to 90 watt. In ppart A, each h module reflects thesamepo ower producctionwhere thewholessystemislim mitedby theeweakestlin nk(string 70 W. Since,, in part B (module inverter and centraal inverter), and the sysstem total power is 27 connected with miccro inverterss) the shadiing effect on the power of one m odule only, and the ngmoduleaarenotaffectted;thesysttemtotalpo oweris520W W.Thesolar moduleswillexpose remainin todirt(ssuchas,bird dsdropping),,dustandm mismatch.Thus,usingthe emicroinve rterwillincrreasethe systemeefficiencycomparedtostringandce ntralinverte ers.[55][56]]  Cosst: The microinverttersaremorreexpensiveethanstringandcentralinverters;inn2010avera ageprice ofcentraalinvertersiis0.4dollarp perwatt.Sinnce,theaverragepriceofmicroinverttersis0.52d dollarper watt.Th hehigherinittialcostofm microinverteersdoesnotmeantheyw willcostmorrebecausethemicro inverters systems arre simpler in n planning, ddesigning an nd installing where they require lesss time to out15%of theinstallattioncosts.A Also,microin nvertersdo notneedDC Cstrings, install.TThiscutsabo andtheyyprovidebetterdurabilittyandlongeerlifespan.[5 54]  Donotrequireanareatoinstallthein verters: oweroutputof898KW hasamasso of1800Kgaandrequires 2.4m^2 Aceentralinvertterwithapo toinstalllit(dataobttainedfromSMAcataloggue).Thesolarprojectw wouldrequireerequiresab bout4to withatotala areaof9.6too21.6m^2;thisareaisn notavailableeintheparkkingarea. 8centraalinvertersw The Miccro inverterss can be insttalled with tthe moduless or they can n be fixed oon the structture; this meanm microinverterrdonotrequ uireextraareeatoinstalltthem.[54]  EassytoExpand d: Inm microinvertersexpandinggthesolarsyystemwithe extramodulesiseasier((buyamicro oinverter and solaar module and connect them to thee system). The central in nverters com me with limited sizes whereth hecostumerrmaybuyaccentralinverrtermuchbigggerthenwh hatisrequireed.[54]  Sileent: The microinverrtersdissipattemuchlesssheatthanccentralinverrterswhere thereisno needfor oolingfans;thisletsthem moperatewitthoutnoise. [54] usingco  Lon ngerWarran nty: Becaause,themiicroinverterrsdonotexpposetohigh hpowerandheatloads comparesto ocentral inverter,theytendttolastlonge er.Microinvverterstypicaallycomewiithawarranntyof20to2 25years; sincecentralinverteerscomewithawarrantyyof5to10yyears.[54] Reports:  PerrformanceR Amonitorsystemcanbeco onnectedonllywithmicro oinvertersw wheretheennergyoutputtofeach oltaic module is monito ored continuuously. This helps in an nalyzing the health of the t solar photovo systemaandhence,im mprovingtheperformannceifthereissafault.[54] Thefollo owingpointssshouldbecon nsideredwhileeselectingam microinverter:

1. Themaximu umnumber ofmicroinvvertersthat can beused dtoconnecttasingleACstringis from16to1 17(basedonthemanufaacturer).[57] 2. Mostmicroinvertersdonotworkw ithoffgridsolarsystemss. nections; the e module sh ould have the same 3. Most types of micro inverters havee MC4 conn ectthemoduulewithinve erter.[57] connectertyypetoconne namicro‐invverterarrayisinparallelsothevolta geexitingth hemicro‐ 4. A“string”offmodulesin inverterrem mainsconstan ntat240Vo r208Vandttheamperageadds.[54]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 40of202 2.10 So olar irradian nce –perforrmance of ssolar parking system: The solarirradiaanceistheamountofsoolarpowerstrikingonagivenareatthatproduce edbythe suninth heformofeelectromagne eticradiatio n;itisameasureofthe eintensityoffthesunshin neandis KW .Thesolarinsolationis theamounttofsolar giveninunitsofkilo owattsperssquaremete r m radiation n energy reeceived on a a given surfaace area in a given tim me; commonnly it is mea asured in KWh kilowattt‐hours per square s mete er ( ecause of ). The solar insolation differs seeasonally be m day thechan ngingrelationoftheeartthtothesunn(occursdaillyandannua ally).[58] The most impo ortant aspecct while dessigning the photovoltaicc system is the system m overall mance wheree the installed parking structure should s have access to as much energy as perform possiblee. The sunlight (photons) representss the fuel so ource for the e photovoltaaic arrays, an nd hence theinstaalledsystem mshouldusethesun’sennergymoste effectively(thearrayssh ouldhavefu ullaccess toasmu uchofthesolarresource).Analyzinggthefundam mentalsofth herelationshhipbetween nthesun andeartthwillhelpin ndesigningtthesolarparrkingsystemwiththeoptimumperfoormance.[29 9] 2.11 Ro otation of th he sun abou ut its imagiinary axis – –Azimuth an ngle for Bah hrain Polyttechnic: The earthrotateesonitsimaginaryaxis(oorrotatesab boutitself);thisaxisisccalledaxisoffrotation urs).Thisrottationisdesccribedby orpolaraxis.Theeaarthcompletesonerotattionpersolarrday(24hou the term m azimuth angle a or justt azimuth; tthe azimuth angle descrribes the poosition of th he sun in relation to north. The T azimuth h angle difffers through hout the day based onn the earth’s steady pically, the nnorth is considered the zero point (North = 0°°) so the movemeent (15° perr hour). Typ number of degrees the sun is from f that pooint gives th he azimuth angle. a If the e sun is at a position uthof270°, andifit’sdirectlyto directly tothewest ofthedesirredlocation thesystem hasanazimu hasanazimuuthof180de egrees°.[59] [60][29] thesoutthofdesiredpositionith

Figuree26,Azimuth hangle[61]

Asiimplerulecaanbeusedttodetermineetheapprop priatedirectionofthepaanelinwhich“Ifyou live in tthe northern n hemispherre, you shouuld point the e panels tow ward south. Since, if yo ou live in southern n hemispherre, you shou uld point thee panels tow ward north” Or in other word put the panel toward equator(maakethearrayyfacethesuun)[62].Bah hrainislocattedinthenoorthernhem misphere, andhen ncethepanelshouldbep puttowards outh. Th heresearchersfoundtha attheaveraggeefficiencyyofasolarm modulemounntedawayfromtrue south(A Azimuth180 0“Northern hemisphere””)decreasessby1.1%fo oreveryfiveedegrees; th hisfigure varies slightly in diffferent partss of the worrld, from one solar pane el manufact urer to another and onsidered during tthe seasons of the year. In this prooject the small variance of efficiencyy drop is co negligible [63]. Thee amount off solar irraddiance receivved for the desired az imuth angle e can be calculateedfromthefollowingformula: Numbeer of degrees from true south E E 1 η 5

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 41of202 E Where,  η 

E

1

1.1% → → 2

:Efficiiencydropper5degreessfromtruessouth(1.1%)..

E:Theamou untofsolarirradiancere ceivedforth hedesiredazzimuthanglee(KW

). m  E : Thee amount off solar irradiiance received when the array is m mounted tow ward true KW south( )andtheselectedtilttangle.[63] m The resultssectionwillprop posethreeddesignoption nsbasedontheoptimum mazimuthangleand direction nofBahrainPolytechniccstudentspaarkinglots.TThenanonlinecalculato rwillbeuse ed(called RoofAziimuthtoolp poweredbyggooglemapss)tofindthe etrueazimu uthangleforreachdesign noption. Design o option 1 will use an azzimuth anglee 180° (the parking stru ucture and m modules willl be put toward truesouth) wherethed directionofttheparking lotswillbecchanged.In designoptio on2,the modulessoftheparkkingstructurrewillbepuutperpendiculartoBahrrainPolytechhnicparking lots(the direction nofthelotsswillnotbe changed).I ndesignopttion3,them modulesofttheparkingsstructure willbep putparallelttoBahrainPo olytechnicpaarkinglots(tthedirection nofthelotsw willnotbechanged). Finally, the three designs will be b analyzed and compaared to find the best coompromise for f client mentandpo oweroutput. requirem 2.12 Mo otion of the e Sun relative to Earth h and tilt an ngle: The earth revollution referss to the earrth's motion n around the e sun; the eearth completes full on per 365.25 days (1 year); the eearth revolve e counter clock wise suuch as, from m June to revolutio Septemb ber.Astheeearthorbits thesun;theetiltofearth h'saxischan nges(by 23.55°fromvertical);the changeo oftheearth’’stilteffecto ontheamouuntofsolarraadiationrece eivedatthe surface.[29]]

Figure2 27,theearthttakesanellippticalpatharo oundthesunduringafullyyear[29]

As shown on the t picture above, the earth takes an elliptical oundthesun n.Duringsum mmersolsticceapproximatelyinJune e patharo st 21 ; thee earth is lo ocated at th he farthest ppoint from the t sun, the e Northern Hemispheere (including Bahrain) iis tilted tow ward the sun n by 23.5°.In thisday,theesunisdirectlyoverthe e (picture 28partA)b of Cancer (p perpendicula ar to Tropicc of Cancer)), where the e Tropic o NorthernHemispherereceivestthemostsunnlight.Sincetheopposite e nsouthernh hemisphere((theSoutherrnHemisphe ereispointed d occursin awayfro omit).[29] Figure e28,earthtilttduringsumm mer solstice..[65]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 42of202 As tthe earth’s orbit continues, the hemispheres exchange their posittions; the Southern S Hemisph here points toward the e sun and Northern Hemisphere H points awaay from the e sun at st approxim mately Deceember 21 leading to w winter solsticce (picture 29 2 part B). TThe sunlightt’s strike perpend dicular to Trropic of Cap pricorn (the sunlight is minimum in n northern hhemisphere)). As the earth’s o orbit continues; two equinoxes willl occur around March 20st (Spring EEquinox) and d around Septemb ber22st(AuttumnalEquinox).Thewoordequinoxmeansneitherhemisphheretiltedto owardor away fro om the sun (the sun is perpendicullar to the eq quator (tilt equals e zero))) [29] [64] [63]. This motionw willbeusedtofindtheo optimumtilt angleforpaarkingstructu ure. PartB

PartC Figurre29,earthtiiltduringequuinoxesandw winterandsum mmersolsticee.[65] 2.12.1 D Declination angle:

Thedeclinationangle istheanglebetw weentheequ uatorplanea andalinedrrawnfromth hecenter esun;itreprresentstheaangularposittionofthesuunduringso olarnoon oftheearthtotheccenterofthe withresspecttothe planeofthe eequator.Thhedeclinatio onanglediffe ersseasonalllybecauseo ofthetilt of the eearth on its axis of rotattion and thee rotation off the earth around the sun. During equinox (spring aand fall) thee earth is no ot tilted andd hence the declination angle is eqqual to zero°°. During summerr the earth is tilted 23.5 5 ° and ‐23.55° during winter (for northern hemiisphere). The e picture belowsh howsdeclinaationangleforeachseasson.[66][67 7]

Figure30,declinaationangleforeachseason n[66]

2.12.2 L Latitude ang gle: The latitude φ is used to show how far north or o south the point is loccated relativve to the oracountrylocatedatppointP;two linesare equator.Thepictureebelowshowsthelatituudeanglefo dfromtheccenterofearthsphere.O Onefromth hecenter“C””totherefeerencepointt“P”and sketched theseco ondhorizonttallinefrom mthecenter “C”wherettheequator representstthereferencceplane;

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 43of202 theangllebetweentthetwolinessisthelatituudeangle.TThelatitudeanglehasarrangefrom‐‐90to90 whereiffthepointP Pisaboveeq quator(the referenceplane)thelattitudeispos itive,andne egativeif thepoin ntisbelowth hereferenceplane.[68]][69] Figure31,Latitudeangl eforacountrrylocatedatpointP[68] 2.12.3 A Altitude/ Ele evation ang gle: Thealtitudeanggleortheele evationanglee(α )istheaangularheigh htofthesunnintheskym measured from the horizon; it refers to how high inn the sky the sun actually is. The aaltitude anglle differs pendsontheelatitudeoffthedesired locationanddthedayoftheyear throughouttheday whereitdep he altitude aangle is 0° when w the sunrises and 990° when th he sun is (will be explained laater on). Th directlyoverhead.[770]

Figure332,Altitudean ngle[70]

mulausedto ofindthealttitudeangle: Theform α 90 φ δ for Northerrn Hemisphe ere → 3 Where,  :Thelatitu udeofthede esiredlocatioon.  :Thedeclin nationangle(dependsonnthedayoftheyear). Zenith Angle e: 2.12.4 Z The zenith angle is the anggle betweenn the sun an nd the verticcal. It is deanglebuttitismeasu redfromthe everticalinssteadof similarttothealtitud thehorizontal.Thezzenithangleisequalto:[[70] 90°

→ → 4

Figure33,ze enithangle[70 0]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 44of202 2.12.5 A Analyzing su un charts:

Figure34,asuncchartfor30°n northlatitude.[29]

The availableso olarresourcesatanylocaationareaffe ectedbythelocation’sppositiononth heearth, thelocalclimateand dthetimeofyear.Theffigureaboveshowsthettypicalsunppathforlocattionwith 30°nortthlatitude;tthecurvessh howthepat hofthesun nchangesacrossthesky indifferent timesof the yearr. The tallestt curve reprresents the ppath of the sun during the t summer r solstice, the middle curve reepresents th he equinox paths (Marrch 21st and Septembe er 21st), annd the lowe est curve represen nts the path h on the winter solsticee. The altitude angle is given alongg the y‐axis, and the azimuth angle is given along the x‐axis. TThrough analyzing the chart; c the alltitude angle e on the qual to α 90 φ δδ 90 30 0 60° (the same oof what is shown s in equinoxx dates is eq graph), andthealtittudedifferen ncebetweennsummerso olsticeandtheequinoxaatsolarnoo onis23.5 degrees.[29] 2.13 Annalyzing tillt angle for solar parkiing structu ure (solar ar rray tilt anggle): Thro ough using Solar Topo online calcculator (pow wered by Google mapss); the latitude and longitud deanglesofB Bahrain(specificallyBahrrainPolytech hniclocation n)are26.1666° and 50.547° respectivelyasshow wnbelow:[71 1]

Figure35,BahrainPolyytechniclatitu udeandlongiitude.[71]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 45of202 2.13.1 O Optimum tillt angle for p parking stru ucture: The tiltangleoffaphotovolttaicmodule representsttheinclinatio onofthearrrayfromthe ehorizon ufacturersof solarparkingsystemuse eaveryslighhttiltangle(between (picture36).Typicallly,themanu 5to10d degrees);maanyfactorse effectonsel ectingthetiiltangleincludingtheheeightofthepark,the windloaadsandthe amountofssolarradiatioon.Furtherm more,thetiltangleshouuldbeatleast10°in orderto oallowforraainrunoff,an ndself‐cleaniingforthepanels.[72]

Figure366,moduletiltangle[73]

The tiltofsolar modulehasanimpactoonhowmuch hthemodule ecapturesuunlight;moun ntingthe pturelesssun nlightthrougghouttheda aythanif module flatagainst awallorflatonthegro undwillcap themod duleistilted tofacethe sun.Theopptimumtiltaangleforthesolarmoduulevariesthrroughout theyearrbecauseofthe23.5deggreestiltineeachseason..Theoptimu umtiltangle forthesolarmodule forallyeearroundpo owergenerattioncanbeccalculatedfro omthefollowingformulaa: O Optimum fixe ed year roun nd setting

90

Optimum fixed year rround settin ng Bahrain

φ location latituude → 5

90

26.166

63.8834

64°

The latitudewasdeducted (equation5))becauseBaahrainisabo ovetheequaatorby26.166°.This oduleisperppendicularto othesuntw wotimesperyearduringgequinox formula makessurethatthemo dates. TThis formula does not mean m the sysstem will pro oduce the maximum m poower every month; m it means tthat across the t whole year; this tiltt angle will provide p the best comprromise for producing energy. The angle of the sun in the e sky changees each mon nth of the ye ear by 7.8 d egrees higher in the summerrandloweriinthewinter.Inthesum mmerifthettiltangleisa adjustedbyaadding15de egreesto the altittude angle; the module es will be peerpendicularr to the sun n just beforee and just after a the summerrsolsticedueetothesun nishigherinntheskyat thesetimes ofyear.Thiismakesthe emodule perpend diculartotheesunandma aximizesthe poweroutputduringthesummerm months: Op ptimum sum mmer setting g Optiimum summ mer setting

90

90

26.166

φ

15

δ → 6 78.834

79°

Inth hewintertheetiltanglecanbeadjusttedbydeduccting15degreesfromthhealtitudean ngle;this helpsthemodulemaximizeenerrgyproductioonduringthewintermo onths. Optimum win O nter setting Opttimum winter setting

90

26.16 66

90 15

φ

δ → 7 48.834

49°

Note:th heformulasiinthissectionshowtiltaanglefromth hevertical(o orthesunalttitude).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 46of202 Figgure37,mod uletiltangle(A)andaltitu ude

To aavoid misund derstanding the figure aabove showss a solar mo odule tilted pperpendicula ar to the sun;theelatitudeangle(B1)isth heanglebettweenthesunandthe horizon.Sinccetheangle eAisthe anglebeetweenthem moduleand horizon(tiltt).BySymme etricaltheangleB1iseqqualtothea angleB2, andhen ncetheangleeAisequal to90‐B.WhhentheangleB1increasses(thesun ishigherin thesky); the anggle A should be reduced d to make tthe total of angle A an nd B2 is 90 (perpendicu ular). For 90themodulleshouldbeplacedhorizzontally(anggleAzerodegrees)to examplee,whentheaangleB1is9 A) is reduce capture the maximu um energy; this explain why the tiltt angle of th he module (A ed during nhemisphere e(table8). summerratnorthern Typicallyy,thetiltanggleismeasurredfromtheehorizon,andhencetheangleisequualto: Table8,mod duletiltangleefromhorizoneachseason nforBahrain

Optim mumtiltfort hesolarstru ucture Remarks Moduletiltangle(frromhorizon))(90–B) Equinox(sprringandfall)) 90°‐644°=26° Tiltequalsth T helatitudeoffthelocation n Sum mmer 90°‐79°°=11° Tiltequalslaatitude‐15(declination) Win nter 90°‐49°°=41° Tiltequalslaatitude+15(declination) The reason for selecting the e value ∓ 155° in spite of o the sun moves m ∓ 23.55° during the year is ngle by 15° will w let the m module to be e perpendicu ular to the ssun for the days d and adjusting the tilt an weekssurroundingtthetimeof year,andheenceoptimizzingthepow weroutput. Forsolarpro ojectthe oltaic array would w be mounted on aa fixed solarr structure, different d tiltt angle for the three photovo designo optionswillb beanalyzeda andtheoptim mumtiltanggleandazimuthanglewi llbeusedifpossible. Seaason

2.14 Azzimuth and tilt angle a analysis (so olar irradiance data): The optimumw waytofindth heamountoofsolarradiaationthatwillbereceiveedbythemo odulefor m it experimentaally; the mo ost famous instrument used to the desired orientaation is to measure untofsolarrradiationisPPyranometerr;itisasenso ordesigned tomeasurethesolar determinetheamou n flux densitty (W/m ). This instrum ment is not available a in Bahrain Polyytechnic, and d finding radiation theamo ountofsolarrradiatione experimentalllyrequiresllongtimetogatherthe dataandto oprepare theaverragevaluesp permonth.T Testingtheaamountofso olarradiationexperimenntally,would dgivethe bestestimationfortthesystem,b butitisnotaavailable. The second option is gathering the solaar data usin ng online calculators; theese data willl be less accuratee compared to experime ental values.. Most of th he online calculators aree reliable wh here they estimatee the amount of sola ar radiationn based on data from m trusted oorganizationss. These

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 47of202 organizaations such as, NASA use u weather satellites to monitor solar s irradia nce, and he ence the accuracyyoftheresultsishigh.Fo ourdifferenttonlinecalcu ulatorswere efoundasshhownbelow: 1. 2. 3. 4.

PVgisphoto ovoltaiccalculatorforAffrica,Medite erraneanBasinandAsia. [74] SolarIrradianceTables(MichaelBooxwell‐GreenstreamPub blishing).[7] n(PoweredbbyOnyxSolaar).[75] Photovoltaicestimation poweredbyNREL).[76] PV‐Watts(p

nistocompaarebetweenavailableon nlinecalculattorsandtoselectthe Themainaimoffthissection ulator.Thedataoftheonnlinecalculaatorswillbeusedtoseleectfinaldesiggnofthe moreacccuratecalcu structure, and finally to find th he amount oof the solarr irradiance that would be collected d by the system which will be b then used to calculaate the electtricity produ uced by the system and d project savings. Furthermorre, the estim mated data bby the selectted online calculator wi ll be compared with AL‐MoayedttowerinBah hrain.Theta blebelowsh howsthe actualvaluesfromtteststhatconductedinA annual aamount of solar s radiatiion for zeroo degree tilt angle and azimuth 1800 degrees using u the aforemeentionedcalcculators.Also o,itshowsthhedatasourrceofeachcalculatorwitthsomenote es: Table9,annualsolarradiationanddattasourceforfouronlineca alculators[7] [76][75][74]

Online calculaator

N.O O

1

SolarIrraadiance

Annualsolar radiation /

2022.01

2

PV‐Watts

1982.1

3

Photovoltaic estimaation

2147.18

4

PVggis

2147.8

Daatasource

NASA

Notes This calculator doees not supp port all Azim muth angles and tilt an gles. The amount a of solar s irradian nceseemstoobenotreasonableinssome situations (the valuues of solar radiation when w odule is horiizontal are higher than n the the mo values of solar raddiation when n the modu ule is tilted(a ananglegreaaterthanze eroandless than 90forb bothwestan deastdirecttions)) There iss no data foor Bahrain; the t data of solar s radiatio on shown byy this calcu ulator is forr the nearest latitude foor Bahrain which is Shiraz (latitude e29.32°N).

Nationnallaboratorry offtheU.S. Deppartmentof Eneergy(NREL) Notm entioned,bu ut poweeredbyOnyxx These calculators can be used to find the Solaarcompany. amounttofsolarirraadiancefora anytiltangleeand hangle. PVGIS Heliocliman nd azimuth CM‐SA AFPVGISdatta

The first two caalculators will not be useed (see note es in table 9). The valuees of PVgis calculator matchess photovoltaaic estimatio on calculatorr (checked in different tilt angles). PVGIS (Pho otovoltaic Geograp phicalInform mationSystem m)calculatorrprovidestw wooptionsfo orestimatinggtheresults:  

ThefirstopttionisPVGIS Helioclim;ittistheclassiicaldata(dattagatheredffrom1985to o2004). The second option is CM‐SAF PVGIIS data; it iss the moderrn data from m 1998 to 20 010. The N.ThelatitudeofBahraiinis26.166°Nwhich coverageof thisdataexxtendsfrom00°Nto58°N mean Bahraain is include ed in the da ta. This optiion is more representatiive of the la ast year’s climate;soitistheoptim mumoption..

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 48of202 As,tthevalueso ofthethirda andfourthc alculatorsm matcheseach hotherandtthefourthcalculator providesstwodata(newandcla assicdata)a ndBahrainiisincludedintheseconddoption.Th hefourth calculato orwillbeussedtoanalyzzethesolar irradiancere eceivedbythemodules fortheparkkingarea usingClimate‐SAFPVGISdata(o option2).T hevaluesoffsolarradiattionprovideddbyPVgiscalculator ntthebestcconditions;tthiscalculatoorrecomme endsdecreassingthesolaarirradiance by15% represen fortheeestimatedlosssesduetottemperatureeandlowirraadiance. 2.15 He eight of the structure: Acco ording to Guidelines G for f the Dessign of Off‐‐Street Car Parking Faacilities (Min nistry of Municip palities&AgricultureUrb banPlanninggAffairs)the eminimum heightoftheestructureffromthe groundiis2200mm;theheighto ofthestructuurewillbese electedbasedonthisguiideline.[77]

Figgure38,GuidelinesfortheeDesignofOfff‐StreetCarP ParkingFacilitties[77]

2.16 Nu umber of pa arks and pa arks dimen nsions: The numberoftthecarparksswascounteedmanually;thedimenssionsofthe parkwerem measured pe.ThedimensionswillbbecheckedaggainusingGooglemaps. usingmeeasuringtap

Figure39,measuringthew widthoftheparks(phototakenbyme))

2.17 Se election critteria for mo odules (pan nels) manu ufacturers: Therrearemanyytechnicalasspectsthateeffectonthe eeffectivene essofthepaanel’spoweroutput, and also o, quality asspects. These e aspects w will be consid dered during g selecting ffinal solar pa anel; the selection ncriteriaforrmodulesma anufacturerssare: 

Effiiciency: The efficiency of o solar module is the peercentage off converting the sunligh t (solar radiation) to odule;them modulewithaahigherefficiencyprodu ucesmoree nergy.Curre ently,the electricittybythemo most effficient availaable solar panels in thee market havve efficiencies a little biit greater th han 20%; since, m most modules fall between 14% to 116% efficiency range. Th he main aim m of this projject is to produceethemaximu umpossiblepowerbythhesolarparkkingsystem;asmallincreeaseinthee efficiency

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page4 49of202 would leead to a greeat enhance e in the pow wer output especially th he area of ssolar parkingg area is approxim matelyequalto8,621sq quaremeter whichisah hugarea.The eefficiencyffactorwillge et10out 10intheecriterionw weightinthedecisionma trix.[78][79 9]  Pow wertolerancce(∓): The power tolerance is an industry‐staandard way used to rep present the solar modulle power output; it representts how much h higher or lower the power p outpu ut of a givenn module typ pe might deviate from the power output mentionedd by the maanufacturer. The power tolerance is usually oralternative elyasarangge(0% to 5% 5 .For expresseedasa∓ peercentagesucchas,arangge(∓ 5% ,o examplee, if a solar module with a power ooutput 100 watt w has a power p toleraance of ∓ 10 %; the module wouldproduceapowerrrangefrom m90wattasaminimumto110watt isamaximu um;since anceisdifferrent(0% to 10% ; ifthesamemodulehasthesamepowerouttputbutthepowertolera thepow weroutputw willbenotlesssthan100w watt.Thisisaaveryimporrtantfactorw whicheffectssdirectly on the p power output; the power tolerancee factor will get 9 out 10 1 in the critterion weigh ht in the decision nmatrix.[78]]  Tem mperaturecoefficient: The temperaturecoefficienttisanimporrtantfactor; itquantifiesshowmuch themodule e’spower he modules ambient te emperature exceeded tthe temperrature at capacityy would deccrease if th standard d test condiitions (if the e module suurface temp perature exceeded 25 the power output decreasees).Themod duleswithle esssensitive temperaturrecoefficienttscanproduucemorepower.The temperaature coefficcient factor will w get 4 ouut 10 in the criterion we eight in the decision ma atrix (the factorsw willbefurtheerdiscussedintheresulttssection).[7 78][79]  NominalOperaatingCellTemperature: es type unsu uitable for B ahrain envirronment; The harsh weatther of Bahrain make soome module duringssummerthe ambienttem mperatureinnBahrainco ouldreachup pto50 anndhencethe esurface temperaature of thee module would w be 50 25 75 . The operating temperature e of the selected d module should be equ ual to or hig her than 75 . The nom minal operat ing cell temperature factorw willget8out10inthecritterionweighhtinthedeciisionmatrix. [78][79]  Windload: dscanapplyh highpressurrestothesurrfaceofthessolarmoduleewhichcouldleadto Thestrongwind failure ((damage). Th he solar mo odule with a higher wind load rating can withst stand stronger winds compareed tomodullewithalow werwindloaadrating.Th hisisavery importantfaactor;itsign nifiesthe module’’s ability to withstand wind w pressurre. The wind d load rating g factor will get 9 out 10 1 in the criterion nweightinth hedecisionm matrix.[78]  Quality:ISO90 001certificattes(qualityaassurancesttandardsforthemanufaacturingindu ustry): e module s hould have some certtificates from m the International For quality asssurance; the Organizaation for Standardizat S tion (ISO). ISO 9001 details the requirem ments that product manufaccturersmusttmeetinord dertobecerrtifiedISO90 000‐compliant.Themannufacturerstthathave undertakenthecareetobecomeISO9001‐coompliantisb betteroption nthanthose whohaveno ot.[78] eInternation nalElectro‐teechnicalCom mmission(IEC C)standardss:  Durability:The eusedtoev aluatehow wellthemodulewillphyysicallyhold dupover The durabilitysttandardsare hen faced with w a varie ety of real world envirronmental conditions; tthe 61215 reliability r time wh standard d was estab blished by IE EC. This stanndard is use ed to perforrm acceleratted stress te ests that simulatee decades of o outdoor wear w and teear that sollar modules are to enccounter during their lifetime..[78] PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page5 50of202 

Maanufacturer’ssassurancess: Thisspointisverryessential; itisdivideddintotwopaartsasshow wnbelow(Peerformancew warranty nty).TheManufacturer’ssassurances willget10 out10inthhecriterionw weightin andproductwarran the decision matrixx because th he strong w arranty is a complemen nt to perforrmance, qua ality, and durabilittyofsolarmodules.[78][78]  Perrformancew warranty: The amountofp poweroutpu utthatasolaarmoduleproducesdeccreasesslighttlyeveryyea ardueto n. The amou unt of degraadation is th he ratio of the t power ddrop per yea ar to the module degradation wer.Intheso olarenergyinndustrythemodulessho ouldnotloseegreaterthan10%to moduleoriginalpow her percentaage guarante ee is the 20% of their production capacity over the first 25 yeaars; the high wer).[78][79 9] desirable(morepow oductwarran nty(Materia alswarranty)):  Pro The productwarrantyisagrranteeagainnstmodulesfailuresasaresultofmaanufacturinggdefects, m s provide aa warranty that the durabilitty and enviironmental issues. Mosst of the manufacturer modulesswillnotfailatleast10 to12yearssafterinstalllingthesyste em;somem manufacturerrsextend their warranty perriods even longer thann that. The longer pro oduct warra nty period is more advantageous.[78]  Inittialcost: Ifyo ouselectthesolarmodulesbasedonntheaforementionedfacctorsdonot thinkalota aboutthe initialco ostbecause the costinccreasesasthheefficiency increases,a andifthebeestquality moduleis m selected d.Usingsolarrmodulesis alongterm minvestmentt,andselectingthebest systemwouldreturn the mon ney with profit. Buying cheap typees would by very risky due d to probbable module failure (corrosio on,electricalfailureorm moduledamaagesduetowindload)o orprobablehhugeefficien ncydrop. The top p brands of solar modules have veery similar prices. p The module m costt would be analyzed becauseethevariatio onofpriceofftheselecteedcompaniesscouldbehighandeffecctonprojecttbudget. [78] 2.19 strructure dessign: Duriing designing a structurre to serve a specified function forr public use;; the engine eer must accountforitissafeety,estheticcs,economiccandenviron nmentalcon nstraints.Whhentheinitialdesign uctureisprop posed;thesttructuremusstbeanalyze edtoensure ethatithasttherequired stiffness ofastru andstreength;thisreequiresapplyyingfundameentalknowle edgeofmechanicslawsttostudytheeffectof differentloadsthatareactingon nsolarstructture.[80] Two o design optiions for the parking struucture will be b analyzed; design optioon A consistts of two columnss carry a horizontal beam (like a sim mply supporrted beam), design optioon B consistts of one column carriesahorizontalbeam m(likeacanntileverbeam m).Thestruccturewillconnsistoftheffollowing nents, colum mns, crossbe eams, purlinns, steel sheets, conne ection platess, connectio on bolts, compon endplatees,anchorbo olts,solarmodulesandaalsowaterm managementsystem(opttional). The loadsthataactontheso olarparkingsstructureare edividedintodeadloadssandwindload.The deadloaadsconsisto oftheweightsofstructuuralmemberrssuchasco olumns,crosssbeamsand dpurlins, andthe weightsofttheobjectstthatwillbe permanentlyyattachedtothestructuuresuchas thesolar moduless.[81]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page5 51of202 2.19.1 M Mechanics–– some theorries, definittions and formulas: The table below w explains different term ms and theo ories that will be used w while calcula ating the onthestructture(thecalcculationstep pswereexplainedprevioously): forcesandstresseso Table10,differentteermswillbeu usedinnextssections.

Term Facctorofsafetyy (FOS) (Analytical ( method)

Stress σ

Axialstress σ

Definition Thesaffetyfactorca anbedeterm minedusingtheanalytica almethodif thedesignw willnotbeteested. The safety factor determines how much the design should witthstand morre load than n the estimattedapplied load.Itisalssodefinedasafactoroffignorancebbecauseitincludesunknowns suchassmaterialsdefects,inapppropriateinsstallation,corrosionorannyassumptio onused.[82]] Theterrmstressisthemeasure ofintensityofinternallo oadactingo nacrosssecctionofbodyy.The stress is i a force orr set of forc es that tend d to deform a body; it iis the intern nal distribution of forces insidethebodythatballanceandre eacttothelo oadsapplieddtoit.Thesstressdistrib bution canor cannotbeu uniformbaseedonthenaatureofthe appliedloadd.Forexample,whena steel bar loaaded in pure e tension; thhe tensile sttress will be e distributedd uniformly. Since, if the bar loaded inbending; itwillhave astressdisttributionwhichvariesw withdistance perpendicularto 3] thenorrmalaxis.[83 ormal stress or axial st ress develops if a force is appliedd perpendicu ular to the cross The no section nalareaofth hematerial((loadsthatactalongthelongitudina laxisofthematerial).W When theforceisgoingttopullthem materialthesstressisdefiinedastensiilestresssucchastension nina rope;since,whentthematerial isbeingcom mpressedbytoopposite forcesthesttressisdefin nedas compreessivestresssuchascom mpressioninashortcolum mn.[84] Force σ Cro oss sectiona al area

Figure40,A Axialtensilestress[84]

She earstress(τ)

When a force is applied a paraallel to the resisting r are ea; the stresss is called shear stresss. For examplle, when a scissor is u sed to cut a piece of paper; two forces are applied opp posite directio onacrossthe ecrossline.TTheshearstressequalsttheforcedivvidedbytheparallelareaa.[85] τ

Elasticmoduluss E UltiimateTensile Strength(σ ) Yie eldStrength σ Allo owablestresss σ Distributedload d (W) Po ointload(P) Ecccentricity(e))

Force MPa M parallel p area

essshowshoowmuchthe ematerialwillstretch,coompressorb bendwhenaaload Themaaterialstiffne isappliied.Itisam measureofthhestiffness ofamateria al(theresisttancetoelassticallydeforrming underaagivenload).Itisalso,ccalledmodulusofelasticcityorYoungg'smodulus;;thehigher value ofyoun ngmodulus meansstiffeermaterial. Itcanbeme easuredthrooughfindinggtheslopeo ofthe lineareelasticportio onofthestreess‐straincurrve.[86] Theten nsilestrengthisthemaxximumstressonthestre ess‐straindiaagram;beyo ondthispoin ntthe materiaalwillbreak;;itrepresenttsthematerialresistance eagainstfaillure.[83][866] m(permanentdeformatio on).If Itisatransitionpointthatthe materialbegginstoplasticallydeform pliedstressisunderthe material’syiieldpoint;th hematerialw willdeforme elasticallyandwill theapp returnttoitsorigina alshapeand viceversa. Duringdesigningprrocess;theccalculatedstrressshouldb belessthanttheyield.[86] n. Thepermittedstresssorloadfo rsafedesign σ [86] Forceaactingovera alength;for exampletheweightof abeamoraasnowload actingona roof. [87]

Forceaactingatasinglepoint;ttheresultanttofthedistrributedload isapointlo oad(inthem middle ofthed distributedlo oad).[87] Thedisstanceamongtheneutraalaxisofapaart,andthelocationofannappliedpo ointload.[88]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page5 52of202 hememberssarerequire edtoresistm morethanonnetypeoflo oading(combined Inmanydesigns,th loadingg) such as, an a object beend in multiiple directions simultaneeously (biaxial bending)). The stressescausedby eachloadccanbeanalyzedseparate ely;thentheeycanbeco ombinedtoggether Combinedload d (like co ombining axiial stresses from two different load ds), or usingg failure theories to com mbine differen nt stresses such s as, usinng von missses theory to o find the tootal of a shear and a teensile stressesactingona anobject.[889] Ahighstressprodu ucedduetoddiscontinuityyinshapesuchas,aholeeornotchwithasmallraadius. Thestressatthediiscontinuityccanexceedttheyieldstre Stress engthleadinngtofailure;since,theoverall stress in the part may be at a safe level. Stress concentration, is produced co oncentration d also becau use of combin nedloadssucchasasetofftensileforccesactingonapointofabody.[89] Abeam moracrossb beam(asuseedinthisdo ocument)is ahorizontalstructuralm memberdesigned Beam chieflytoresistmoments.[90] Theten ndencyofafforcetocausserotationaaboutapointoraxis;itiistheproducctofalength hand Moment(M) M atransvverselyappliiedforce N.. m .[90] oment of ine ertia or secoond momentt of area is a geometriccal property of an area which w The mo reflectss how it is points p are ddistributed with w regard to t a selecteed axis. The area momeent of inertiaofbeamscro osssectiona lareameasu uresthebeamsabilityto oresistbendiing;thelargeerthe momen ntofinertiatthelessthebbeamwillbe end.[91] Thepicctureandequationsbeloowshowhow wtofindthemomentof inertiaofarrectangularsshape basewidtho ofbandheigghthforboth hXandYaxiis:[92] Mom mentofinerttia withab (I)

Figure41,rectanngularshapewithabasew widthof anddheight [93 3]

I

Flexxuralbending form mula(bendin ng ofabeam) o

m [94]

‐‐I

ubjected to a transversee loads; the e beam will bend When, a beam witth a cross ssection is su ngandbucklingmayoccuuralso).[87]]Thebendingformulaoffabeamis: (twistin M σ E , I Y r  M:thebendi M ngmoment (N. m).  I:Momentoffinertiaofthhesectionab bouttheben ndingaxis m . σ tress(Pa).  σ:bendingst  E:Young’sM E Modulusofthhematerial(GPa).  R:radiusofc R urvatureoftthebentbeaam(m).  Y:centroid/n Y eutralaxis(m m). Thisequationcanb bewrittenass:[95] m σ Y I m

m , Z I  Z:isthesectio onmodulus Z m ,andfinallyy: M Z σ everalassumptionswhichhtheyare: Thebendingformulaisderived basedonse T  Thebeamisi nitiallystraigghtandhasaconstantcross‐section .  Thematerial T ofthebeam mishomogen neousandfollowsHookee’slaw.  Themodulus T ofelasticityfortensionandcompressionareeq ual. loadingmusstcontainap  Theplaneof T principleaxissofthebeam mcross‐secttionandtheloads m mustbeperp pendiculartoothelongitud dinalaxisofthebeam.[996] σ

Y

or

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page5 53of202 Column

Columnbuckling

Eulercritical bu ucklingload, P

A vertical structura al member used in in building b stru uctures to trransfer load ds from the main beams (crossbeam)tothefounndation.Colu umnscanexxposetoageeometricinsstabilityknow wnas bucklin ng.[90] The collapse of lon ng thin mem mber (column) under lon ngitudinal coompressive loading at a a load dthatcauseesyieldingin ntensionisb buckling;itissasuddenlargedeform mation lowertthantheload mnbeginsb ofaco olumndueto oaslightinccreaseofanexistingloa ad(Thecolum boworflexu under compreessionloads)).[97] Thecritticalloadisatransition betweenthe estableandunstablecoonditionshap ppensatasp pecial value of o the axial force. f The ccritical load is i calculated using Eulerr’s formula for f an ideal Euler column n(assumingp perfectmateerialandperrfectlyalignedloading):[[98] π EI P L WhereP isdefine edasthemaaximumloadthatthecolumncanexpposetobefo orebuckling.[98] d betw ween successsive points which havee zero The efffective lengtth of a colu mn is the distance momen nts;itisbase edonthetyppeofthecolu umn.[98]

Effectivelength h L

Figure42,efffectivelengthh

offora acolumnfixed datthebase andfreeatth hetop.[98]

The piccture above shows the eeffective len ngth between two zero m moment points for a co olumn fixedattthebasean ndfreeatthhetop;thislengthequalstwicetheooriginallengthofthecollumn. [98]

Whenaaforceisap ppliedtoab oltbytwop platesassho ownbelow;aashearstresssisdevelop pedin thebolltequalsthe eforcedivideedbytheare eaoftheboltparalleltootheapplied dforce(bolt cross section nalarea):[99]] Sh hearinbolts

Figure43,sh hearstressinabolt[99]

Fn Momentof M conn nectionplatee‐ ten nsioninboltss

F2 F1

Figurre44,momen ntinaconnecctionplate[1000]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page5 54of202 When a moment is acting at ppoint C; a re eaction force e is produceed in the bo olts (tension)); this reactionforceatbo oltncanbeccalculatedussingthefollo owingformu la:[100] M L F L L L Thestressinboltnequals: F Tensile streess on bolt n Cross se ection area oof the bolt Note:tthederivationofthisform mulaisshow wninresultssection(expplainedinmo oredetail). erials generaally; it is for two dimenssional This theory is applicable for caast iron and brittle mate stress cases. c This theory t statees that failurre will happen if the m maximum principal stresss in a Th hemaximum system reaches th he value of the maximu um strength h at elastic limit in sim mple tension n; the priincipalstresss maximu umprincipalstresstheorryformulaissshownbelo ow:[101] theory 1 1 σ 4τ 2 2 The Vo on Mises theory (Shear Strain Enerrgy theory or o Distortionn Energy theory) statess that yieldinggoccurswhe enthedistoortionstrain energyper unitvolumereachesthe edistortionsstrain energy per unit vo olume for yieeld in simple e tension or compressioon of the sam me material. This theory isapplicable eforductilem materials[10 02][101] Vonmissestheo ory

Totalsstress( ° )=

101 nequationsfforplanestrresscanberrepresented ingraphicallmethodthrrough Thetraansformation using a a plot called d Mohr’s cirrcle. This graphical reprresentation is useful be ecause it en nables studyin ng the relatio onships amoong the normal and she ear stresses acting on numerous incclined planes at a point in a stressedd object. Also it helps in calculating principal stresses, maxiimum shear stresses, s and d stresses o n inclined planes. p Mohrr’s circle is iintroduced by Otto Chrristian Mohrin n1882.[103]

Them materialfails(yields)whe nσ° σ

Mo ohrcycle(2D D)

Figure e45,2dMohrrcircleshowin ngmaximumshearandnoormalstress[1 104]

Can ntileverbeam m Simplysupporteed beam

Thefigureaboveshowsanexaampleofa2 2DMohrcirccle;thetwo principalstressesareshown inred,andthemaxximumshearrstressissho owninorang ge. Abeam msupportedononeend only.[90] Abeam msupportedonbothendds(twoends)).[90]

Buiilt‐upSection n

ber, typicall y an “I” sh hape that made m from i ndividual fla at plates welded A strucctural memb togetheer.[90]

Cssection(cold d formed)

Amemberformedintoa“C”shhapedprofile ethroughcoldroll‐forminngfromcoilss.[90]

Purlin We ebandflangee

Ahorizzontalsecond darystructu ralmember,,boltedtothebeams,w whichtransfe erstheroof loads fromth heroofcoverring(solararrray)tothep primaryfram mes(crossbeaams).[90] ntofabuilt‐‐upsectionssuchas,an““I”sectionisscalledweb b;sincehorizzontal Theverrticalelemen elemen ntsarecalled dflanges.[1005]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page5 55of202

Figure46,Webandflan nge[105]

Foundation F

A substtructure that supports aa building orr other struccture; typicaally it is mad de from conccrete. [91]

Footing Con nnectingboltts

Reinforrcedconcretebaseused toprovidessupportforthecolumn.[[91] Asetoffbolts(typiccallyfour)areeusedtoconnectthestrructuralsecttion.[91] Bolts used u to anch hor structurral memberss to a concrrete floor, fooundation or o other sup pport. Anchorbolts A Usuallyyreferstotheboltsatth ebottomofthecolumnss.[90] Baseplate Theend dplateofacolumnwhichhrestsonth hesupporting gsubstructu resurface.[990] mn with horizontal beam m through welding w and using A platee used to connect the v ertical colum Con nnectionplatte connecctingbolts.[990]

Movvingaforceo on itslineofaction n

Movvingaforceo off ofitsslineofactio on

Figure 47,movingaforceonitslineofaction [106]

Thepicctureaboveshowsmovinngaforce(FF)frompointtAtopoint B.Boththepointsareo onthe vector’slineofaction,andhen cetheexterrnaleffectwillnotchangge(applyingttheforceatpoint withthesam memagnitudeewillnotchangetheeffectontheo bject).[106] AorBw

Figure488,movingafo orceoffofitslineofactionn[106]

ngitislineoffaction;theereisachanggeintheextternal Whenttheforce“F””ismoved,bbutnotalon effect. Asshownab bove,movinngtheforce “F”frompointAtoBreequirescreattinganaddittional couple moment M force F distance d . So to move m a forc e off of its line of action; a coupleshouldbead dded.[106] Theforrmulabelow wisfromFEM MAstandard ds;itwillbeusedtocalcculatesquaredfootingsizeof thefoo otingduetoa anaxialloaddtransmitted dfromtheco olumntotheefooting: L

Fo ootingdesign n formula

P

h

x q

t t

W w

t

w

Where,  L:Squarefootingdimensiion(m). daxialloadffromthecolumnwhichistransmitte dtothefootting(N).  P :Theapplied  h :Heightoffpierabove grade(m).  X:Distancefro omgroundtoobottomoffooting(m).  t :footingtthickness(m ).  W :Columnwidth(m)  t :Columntthickness(m m) ).  w :Thedensittyofthefoootingmateriaal(concreate)( N m

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

56of202 Page5 

q:Thesoilbea aringcapacittywhichisth hecapacityo ofsoiltosuppporttheloa adsappliedttothe grround.Itreprresentsthem maximumprressurethatcanbesuppoortedbysoilbeforefailu ure. Note:tthispartisexxplainedinm moredetailin ntheresultssection 2.19.2 F Factor of saffety The factorofsaffetywillbee estimatedbaasedon5ele ementswhicchtheyare,tthepropertiesofthe material, the applieed stresses, geometry, failure anaalysis and th he desired reliability. Then T the estimateedfactorofssafetywillbe ecompared withcommo onvaluesuse edforsteelsstructures.[882] 2.19.3 W Wind loads o on the solarr structure: Wheenthesurfaceofsolarsstructurearr ayblockstheflowofwinds;thewinnd’skinetice energyis converteed into poteential energyy of pressuree causing a wind w loading g. The effectt of the wind on the solararrraydepends onvelocityanddensity oftheair,th heangleoftthewind,theeshapeandstiffness ofthesttructure,and dtheroughn nessofthes urface.Twoapproachescanbeuseddtoanalyzethewind loading whichthey arestaticap pproachorddynamicapproach.Inthiisdocumentt,thewindloadswill t static ap pproach. In tthe static approach, the e fluctuatingg pressure produced p be analyyzed using the throughtheconstan ntlyblowing windisesti matedbyth hemeanvelo ocitypressu rewhichacttsonthe

structure.Thispresssure(q isde efinedbyitiiskineticene ergy q (approxiimately1.25

Kg

m

ρV ρ ,whereρρisthedenssityofair

andVisairveelocity(m/s))).[107] )a

Wind load analysis base ed on staticc approach a and standar rds: 2.19.4 W The wind‐loadin ng codes and d standards appeared in n the second d half of thee twentieth century; they haave achieved d wide acce eptance. Th ese standarrds are base ed on reseaarches and may be simplifieedmodelsoffwindloading;hencea highaccuraacyresultsm maynotachieevefromthe em.The resultsssectioninthisdocumenttwilluseASSCE/SEI7‐10 Standardwhichisfrom AmericanSocietyof CivilEnggineers(chap pter29“Win ndLoadsonO OtherStructturesandBuildingAppurrtenances−M MWFRS”). This standard, desccribes variou us ways of ccalculating wind w loads based b on baasic wind sp peed and on factors for f the effecct of heightts and terrain type, toppography an nd shape location, modificatio Themainaim mofusingth hisstandardistofindtheeresultantfo orcethat factorsffordifferentstructures.T actontthesurfaceo ofthe solar parkingarraayinorderttodesign the estructureoofthepark (columns ( andcrosssbeam).[108]Thefollo owingarethhestepsthattwillbeused dtocalculattetheresulta antforce onthesurfaceoftheesolararray basedon(A ASCE/SEI7‐10 0Standard): exposure 1. Determine risk category of sollar 4. Determinevelocittypressuree parkingstructure. coefficient,K or K . t basic wind w speed, V, q . 2. Determine the 5. Determinevelocittypressure q fordesignriskcategory. 6. DetermineforceccoefficientC . windloadparameters. 7. Calculate wind force, F. F [108] 3. Determinew Material sellection: 2.19.5 M Ifth heengineer plantodesiggnacompo nent;thede esignneedtobesafe,innexpensive, available andableetobemanufactured.T Thefirstprinncipleforcosstreductionduringdeig ningprocesssisusing availablee standards in the marrket. The staandard is a set of specifications foor materials or parts required dtoachieveconsistency,,efficacy,an daspecified dquality.Alloftheorgannizationsliste edbelow haveesttablishedspeecificationsfforstandardssandsafetyordesignco odes:[109]  AmericanInstituteofSte eelConstrucction(AISC) onandSteelInstitute(AIISI)  AmericanIro

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page5 57of202   

AmericanSo ocietyofTesttingandMatterials(ASTM M) DeutschesIn nstitutfürNo ormung(DIN N)whichmeaansGermaninstitutefor rstandardization. BritishStand dardsInstitution(BSI)[1009]

eercould Wheenanengineeerneedsa barofhot‐roolledsteelsectionof33mmsquaree;theengine makea specialordeerorhe/she couldrolloormachineaa40mmsqu uarebartotthedesiredssize.This approacchincreasethecostofth hecomponennt;sinceusin ngastandard dbarsizeoff30to40mmwould dothessamefunctio onof33mmsquarebar, andreducessthecosts.A Also,itisavaailableinthe emarket. Forthis reason,inth heresultsse ection,them minimumsize eofthecom mponentswilllbecalculattedusing mechanicsthenastandardsizew willbeselecttedfromaccatalogue(th hestandardssizemustbeequalto orgreaterthanthem minimumrequiredsize) [109]. Acco ording to ALL‐Fozan stee el company (steel supplier in Bahra ain); the avaailable steel types in Bahrain are from China, UAE E, Qatar, Baahrain and KSA (AL‐Za amil steel). Al‐Zamil stteel is a engineeringssystemsand dservices manufaccturingandffabricationggroupthatprrovidessteelproducts,e for the construction n industry. Itt provides d ifferent products based on differennt standards such as, ndDIN.Som mecataloguesanddesignnmanualsfo orAl‐Zamilstteelcompanyyareavailab bleinthe ASTMan Al‐Zamillwebsite.Th hiscompanyyhasoffices inBahrainin nAl‐Zamilbu uilding(Manaamagate“te elephone 175000225”).Inthe resultssection,Al‐Zami lcatalogues willbeused dtoselectsttandardsize esforthe structurecomponen nts.

Figure49,LoogoofAl‐Zam milsteel[110]

2.19.6 H Hot rolled a and cold rolled sectionss: Rolliingisametaalformingprocess;inthhisprocessaametalstockkispassedtthroughone ormore pairs off rolls in ord der to minim mize the th ickness and to make th he thicknesss uniform. Rolling R is categoriizedbasedo onthetempe eratureofth emetalrolle ed.Ifthetem mperatureoffthemetalisgreater than it iis recrystallization temp perature; thee process is called hot rolling; r the ppicture below shows various steelshapessthataretyp picallyproduucedthrough hthehotrollingprocesss.Ifthetemperature metalislesstthanitisrecrystallizationntemperature;theproce essiscalled coldrolling.Thecold ofthem worked sections haave bright new n finish aand are more accurate compared hot rolled sections; ucturalelemeents.Al‐Zam milsteelofferrsbothhotrrolledandco oldrolled typicallyytheyareligghtsteelstru steelsecction;bothtyypeswillbeusedfortheestructureoffthepark.[109]

Figure550,Differentssteelsectionsshapesthata recommonlyyproducedthroughthehottrollingproce ess[109]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page5 58of202 2.19.7 U Universal Be eam (UB) Univversalbeamss(UB)willbe eselectedfoorcrossbeam msandtheco olumns.The euniversalbe eamsare referred dtoI‐section nsorH‐sections;thedeppthoftheu universalbea am(UB)ism muchgreaterrthanits width. The increased depth re esults in highher bending resistance capabilities. c The universsal beam ber represen nts the deptth of the be eam, the name iss written as 203 x 133 UB 30 ; thee first numb secondiisthewidthofthebeamandthethirrdrepresentstheweighttofthebeam mpermeter.[111] 2.19.8 S Some of the required prrocesses forr fabricating g the parkin ng structuree:  Drilling.  Weldiing.

Priming,paintingandga alvanizing

Cuttin ng.

Al‐ZZamil Compaany providess these servvices; in Bah hrain there are a some faabrication co ompanies suchas,Al‐Moayed steel,Abraj MetalTradiingandAL‐N NOOHwhichtheyusem modernmach hinesand toolsforrsteelfabrication. 2.19.9 M Methods of JJoining: The horizontal crossbeam c will w be connnected with the vertical column by using a set of bolts (about44to6bolts);;thereared differentwayysthatcanb beusedtoco onnecttheccolumnwith abeam; thefollo owingaretw woexamples:  Flushendplate econnection ns: Inth histypeofco onnectionasteelplate( typicallyhassthesamedimensionsoofbeam)isw weldedto the flanges and web b of the bea am as shownn below. Thiis type of co onnection is simple and provides ally,thesize ofendplate eisfrom10mmto20m mmthickforusewith somebeendingresisttance.Typica M20bo olts;whenth heendplateisusedform momentconnection(ecccentricloadinng);theselectedend plateshouldbethickker(between n15mmto220mm).[112]

Figgure51,Flushhendplateco onnections[112]

nplateconne ections: Fin n the worksshop to the e column Fin plate conneection consissts of a plaate welded previously in portingmem mber).Thentthecrossbeaam(supporte edbeamwebb)isbolteda asshown (represeentsthesupp onthefiigurebelow..Finplateco onnectionsarreinexpensivvetofabrica ateandsimp lertoinstall.[112]

Figure52,Fiinplateconne ections[112]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

59of202 Page5 2.19.10 0 Structure m modeling: Solid dworks softw ware (versio on 2015 studdent edition)) will be use ed for creatinng a 3d mod del of all compon nents of thee structure of the car parking systtem, then for f assembliing the com mponents togetherandcreatin ngengineeriingdrawingssandfinally foranalyzin ngthestructture(testing it)using he entire car parking wiill be design ned using finite element analyysis feature. Also, a 3d model of th orks. SolidWo 2.19.11 Finite elem ment analysiis (Solidworrks simulatiion): The stressesacttingonthep partsofthepparkingstruccture(purlin,crossbeam mandcolumn n)willbe d (calculated d) using Solidworks sim mulation (FEA A) and then n compared with the ca alculated analyzed theoretiicalvalues.Insteadofan nalyzingthe wholestruccture(theassembledparrk);eachcom mponent willbeaanalyzedindividuallyino ordertomakkethesimulationsimple er;thiswillnnotaffectthe eresults. (Append dixDexplainsFEAandsh howstheste pstodoFEA AforPurlin,ccrossbeamanndcolumn). 2.20 Po ower calculation: Pow wer is a rate of flow of energy; it iss measured in in Watts (W) or kilow watts (kW). Power is measureedinaninsttantwhereittcandifferw widelyoverttimeandfro omminutetoominute.Po owercan be calcu ulated using the formula a Power W Curreent Amps X X Voltage vvolts . Energy is the measureementofpowermultipliiedbytime; typicallyitismeasuredin kilowatt hours.En nergycan becalcu ulatedusingttheformula Energy kW Wh Pow wer kW X T Time hourss .[29][113 3] The energyform mulawillbeu usedtoestim matetheactualenergyp producedby solarparkingsystem for25yeears,estimatethepowe ercoveredbyythesystem mandselectinverter.Theeglobalform mulathat usedtoestimatetheeelectricity((energy)pro ducedbyph hotovoltaicso olarmodulessmonthlyis:: E

maaximum

A

η

H H → 8

E

 

η:Efficiencyyoftheselecctedsolarmoodule. A:Totalsolaararraysarea a m .

H:Monthlyaveragesola arradiationrreceivedbytthesystem

:Maximumellectricityprooducedbythesystemmo onthly(kWh per month)).

.

.[[114]

The totalareacoveredbyso olarmodulessofeachparkrowwillb becalculatedd;thenthetotalarea ofwest sideparkinggrows(row1,3,5,7,9,111,13and15))willbecalcculated,and finallythetotalarea ofeastssiderowswiillbecalcula ated(row2,44,6,8,12,14aand16).Thetotalareas willusedto ofindthe totalpow werproduceedbythesolarparkingsyystem. Form mula8calcu ulatesthepo owerproduccedbytheso olarmodule underStanddardTestCo onditions (STC); th he STC cond ditions are the t temperaature of the solar cell iss 25 , the solar irradia ance is 1 (KWh/m m ) and theere is no lo osses. This fformula represents the maximum energy thatt can be produceedbythesolarmodules (alaboratorryvalue).Th hisformulan needstobe modifiedin orderto estimateeenergyouttputundero outdooroperratingcondittions(suchaslowirradiaance,dustan ndcables losses)tthroughmulttiplyingthee equationby performance efactor(PF) E actuaal A η η H PF → 9 PF iss the perforrmance redu uction factorr; it is based on the outdoor conditiions and typ pe of the selected d solar mod dule. The average perfformance re eduction facctor is 0.755. The performance reductio onfactorwilllbeestimate edmanually accordingto oBahrainenvvironmenta ndtheselectedsolar module..

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 60of202 2.20.1 S Steps for callculating pe erformance reduction ffactor: Theperformanccereductionfactorconsisstsofsevenfactors;thessefactorsareedividedtoconstant main constan nt) and variaable factors (factors cha ange monthhly or annua ally). The factors (factors rem perform mancefactorwillbecalcu ulatedmonthhlyforfirstyyear,andthe entheperforrmancefacto orwillbe calculateedyearlyforrthefirst25years.

Dustanddirtp performancereductionfaactor (constant): Dusttanddirt(su uchasbirdsd dropping)caanaccumulatteonthesurrfaceofthessolarmodule eleading to preveent part of the t sunlight and minimiize the pow wer output. The T dust andd dirt is selff‐cleaned duringrrainyseason..Atypicalan nnualdusta nddirtperfo ormancered ductionfactoorPF facto ortouse is0.93.[[115]  Low wirradiance eperformanccereductionnfactor (constant): The efficiencyo ofsolarmodu uleusuallyrreducesatlo owlightintensitieswhichhleadtoreducethe utput. The performance p e reduction factor for low irradian ce loss is based b on module’’s power ou characteeristicsoftheemodules(m mentionedinnthecataloggue).[115]  Pow wertolerancceperformancereductioonfactor (constant): Thissfactorismeentionedinsection2.16. ormanceredductionfacto or  Missmatchandwiringperfo (constant): The maximum power p outpu ut of a solarr array is ussually fewer than the tootal of the maximum m oftheseparaatemoduless.Thisreducttionhappensduetovariationsinpeerformanceffromone outputo module tothenext andiscalled dmodulem ismatch.Alsso,thepowe erislostdueetoresistanceinthe wiring;areasonablemismatchandw wiringperforrmancereductionfactor PF is0.9 95.[116] systemw  Invverterperforrmanceredu uctionfactorr (consta ant): TheDCpowerproducedbytthemodule needtobecconvertedinttoACpowerrusinganinvverter;in thisconversionproccesspartof thepowerw willbelost. Forthesolarparkingproojectmicro inverters will be used (probaably). The typical t efficiiency of cen ntral inverte ers is 96.5 % %. This efficiency is ditions; the actual efficiency will measureed by the manufacturers under wel l‐controlled factory cond be loweer. It is assumed that th he actual eff fficiency of the t micro in nverters is 995 %, and he ence the inverterperformanccereductionfactorPF eequals0.95.[116] mperaturecoefficientpe erformance reductionfa actor variable–m monthly):  Tem (v For every degreee rise in te emperature ( greaterr than stand dard test coonditions (25 5 ); the put decreases and vice versa. The amount of increase orr decrease in power module power outp outputiisbasedon themodule temperaturrecoefficienttfactor(K); thefollowinngformulacalculates theperfformancered ductionfacto orduetotem mperatureco oefficient: PF F 1 Temperatu ure coefficieent K 25 T → 10 Where,  PF :Solarmoduletem mperaturecooefficientperrformancere eductionfacttor.  K:Temperatturecoefficie entofthem odule.  T :Totaloftthecelltemp perature(25 )andamb bienttemperature.[36] Accordin ng to equation 10 and d average ttemperature e in Bahrain; the tem perature co oefficient reductio onfactorwilllbecalculate edmonthly.  Mo oduledegrad dationreducctionperform mancereducctionfactor ablebutyearrly): (varia Thissfactorisexp plainedinsection2.16(pperformance ewarranty). ductionfacto orforthefirsstyear:  Callculatingred P PF year 1 PF PF P PF PF PF PF F PF → 11 [117] PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 61of202  Caalculatingred ductionfacto orforanyyeear: werproduced dperyearwillbecalculaatedusingthefollowingfformula: Thepow desired yearr Tottal power prroduced in d

PF

for desired year → → 12

2.21 Ba ahrain Poly ytechnic pow wer consum mption and d savings: The campus maap for Bahrain Polytechnnic and univversity of Bahrain (Isa toown campuss) will be printed on an A4 paper; p throu ugh using a Vernier the e main dime ensions of tthe buildingss will be calculateed;thentheeratiooftota alareaofBaahrainPolyte echnicbuildingstothecaampustotalareawill be calcu ulated. In orrder to estim mate the poower consum med by Bah hrain Polytecchnic only; the t total powercconsumedwiillbemultipliedbythisraatio. BD) by Bahraain Polytechnic is equal to the tota al energy The price of eleectricity consumed in (B eelectricityttariff(BDpeerKWh).The epriceof consumeedinthedeesiredyear(KW‐h)multi pliedbythe electricitty produced d by the sollar system i s equal to the t amount of electriciity produced d (KW‐h) multiplieedbytheeleectricitytarifff(BDperKW Wh).Furtherrmore,theen nergyprodu ctionofsola arsystem decreasees over timee; the savinggs should bee calculated yearly. The savings is tthe sum of prices of electricittyproducedbythesolarrsystemfortthefirst25yyears. 2.22 Co ost analysiss: Thefollo owingstepsshowhowth heprojectcoostwillbecaalculated: 1. Calculatingtheinitialcosttoftheprojeectthrough:  Estimatingth hecostofthe estructureinncluding:  Find ding the averrage cost of the (I and C sections) pe er area (1 m ) and length of 1 m thro ough asking steel s supplieers in Bahrain; then estim mating the ccosts of colu umns and crosssbeams.  Estim matingtheco ostsofremainningsteelsecctions(steelssheetsandstteelplates).  Estim matingthefa abricationcosst.  Estim matingtheco ostsofinstall ingmechaniccalparts.  Estim matingtheco ostsof,nuts, boltsandwaashers(basedonManazel shopinSalm mabad).  Estimatingth hecostsofprreparingthelland.  Findingthettotalcostofin nverterandssolarpanelsu usingonlinessources.  Estimatingth hecostofele ectricalcompoonentsandaaccessories(w wires,junctionnboxes,fuse es,etc.). 2. Calculatingthecostofth heprojectforr25yearsthroughestima atingthema intenanceco osts,then comparingth hetotalproje ectcostwith thetotalsavings. Also o, Al‐Zamil stteel companyy was asked to prepare quotation fo or the structuure (design 2 2 for the struccture). 2.23 Me eaning of th he criteria rrating: Thetabllebelowdefinesthemea aningofthe criteriaratin ngsthatwillb beusedinthhedecisionm matrices: TableA,them T meaningofthe ecriteriaratin ng

Rating 0 1‐44 5‐77 8‐110

Meaning M Criterio onisnotmet. Criterrionismetw withpoorperrformance. Criterrionismetw withgoodperrformance. Criterionisperfectlym met.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 62of202

ChapterThree–Resultsanddiscussion: 3.1 Intrroduction: Thiss chapter sho ows the find dings of thiss project; it is divided in nto three paarts. The firsst part is n;itusesdecisionmatriccestoselecttthetypeoffsolarcell,solarsystem andsolarm module.It selection also,selectsthefinaaldesignfor theparkinggstructure.TThesecondp partiscalcullationsandd design;it calculateesthestresssesonthepartsofthesstructureusingmechaniccsandSolidw works.Also, itshows 3d model for the structure s com mponents a nd assemblyy. The third part is pow wer calculations and systemeevaluation;itcalculatestthepowerpproducedbythesystem,thepowercconsumedbyyBahrain Polytech hnicandthen nitshowsprrojectsavinggsandimpaccts. 3.2 Sele ecting the ty ype of solarr cell: Theselectioncriiteriaforsola arcelltypeaarementione edbelow(ba asedonsectiion2.5.2):  Theeglobalinstalledcapacitty(availabiliity): Table1 11,Percentaggeofglobalin nstalledcapaccity[46]

CrysstallineSilicoon SolarCells

Sin ngleCrystalline

Pe ercentageofglobal installedcapaacity

Amorphous Silico on

Pol ycrystalline

7 78%(thePo olycrystallineetypeisthe co ommonlyuse edonthegloobalmarket))

Thiinfilmcells Caadmium CopperIndiium Te Telluride

% 22%

Acco ording to Global Marke et Outlook ffor Photovo oltaics (www w.epia.org); 78 % of th he global installed d solar paneel system is Crystalline SSilicon and 22% is Amo orphous Siliccon (until 20 014). The Cadmium m Telluride and Copper Indium arre in the eaarly stages of o developm ment so theyy will be excluded dfromanalyysis(willnottbeselectedd);however, theywouldhaveabrig htfuturein termsof cost,weeightandreaactiontoclim maticconditioons.[46]  Effficiency: Table12,CurrrentcommerrcialefficiencyyatSTC(

)fordifferen ntsolarcells(m modules)[46]

CrrystallineSiliicon SSingleCrysta alline Polycrystallinne

SolarCells Currentcomm mercialefficiencyatSTC(η

)

15‐20%

Th hinfilmcells Amo orphousSilicon

12‐15%

5‐7%

Assshownontable12them maximumeffficiencycan beobtained disfromMoonocrystallin ne(20%), then Po olycrystallinee (15%); sincce, the Amoorphous Siliccon has an efficiency (77% only). Th he single Crystallineproducess the maximum powerccomparedto oother types;also,it haasthebest powerto p on(factor)w willget10outt10inthede ecisionmatrrix.[46] arearatio.Theefficiencycriterio Table13,decisionm matrixformo oduleefficiency[46] Critterionweight (outof10) (

10

Ratinga andScore SingleCrystallline

10×10=10 00

Polycry ystalline

7×10 0=70

Ratinggjustification n

Am morphousSilicon n

10×3=30

Monocrysstalline solaar panels ha ave the high hest efficiencyyrates.Polyccrystallineisnotasefficiient asmonoccrystalline,aandthereforetheyrequiired a larger surface s to pproduce the same electrrical as monocrystalline ppanels. Amo orphous Silicon hasaVerrypoorefficiiencyandhe ence,theyhave lowspace etopowerraatio.

NoteSingleeCrystallineisthebest. PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 63of202 

Tem mperaturecoefficientfo orpower: Thetablebelow wshowsthettemperatureecoefficientffordifferent typesofsolaarmoduletyypes: Table14,Temperatturecoefficien ntforpower((K)[46]

CrystallineSilicon Thinfilmcell T ls SingleCCrystalline Poly ycrystalline AmorphousSilicon Temp peraturecoeefficientforp power K ‐0.45% %per ‐0.5%per ‐0.21%per aturecoefficcientofSinglecrystalline,polycrystal lineandamorphous. Tablle14shows thetempera Amorph hous Silicon has minimum temperatture coefficient; this me eans amorphhous silicon loses or gainsmo oreenergyccomparedtocrystallinettypes.Thetablebelowsh howstheaveeragetempe eraturein Bahrainpermonth: Solaarmodule

Table15,Averageweaathertempera ature inBah hrain[118]

Ave erageweatheertemperature inBah hrain Jan Feb M March Ap pril May June July Aug A Seppt Oct Nov Montth 20 21.1 24.4 29 9.4 33.9 36.7 37.8 37.8 3 36.77 33.3 27.8 peratureinB Bahrainis37.8 ;accordingtoequattion1insecttion2.5.2 Themaximumaveragetemp thecorrectedefficieencyofeachsystemis:

Dec 22.2

Table e16,thedroppofsolarmod duleefficiency[46]

CrystalllineSilicon Thiinfilmcells SingleeCrystalline Polycrrystalline AmorrphousSilico on Efficien ncyatSTC(η ) 115‐20% 12‐15% 5‐7% Correctedef C fficiencyat3 37.8 η 12.44to16.6% 9.7to o12.2% 4.6to6.4% Thedropofs T solarmoduleeefficiency 17% ↓ 18.9% ↓ 7.9% ↓ he effect of the temperature coefficcient on thee modules effficiency. The table abovee explains th heretheefficciencydecreeasedby18.9%;itis Themaxximumdrop occurredinpolycrystalllinetypewh obvious thatincreassingthetem mperatureinccreasesthe moduleefficiencydrop..Throughco omparing n the correccted efficien ncy of differrent module es; the efficiencies of siingle crystallline and between polycrysstalline modules are still much greeater than Amorphous A Silicon S moduules, and he ence the temperaature coefficcient does not n have a nnoticeable effect e on the e overall sysstem efficiency. The temperaaturecoefficientwillget4out10for thecriterion nweightinthedecisionm matrix.[119] Table17,deccisionmatrix fortemperaturecoefficien nt(K)criterionn So olarmodule

Rating gandScore

Criterionweight (outof10)

SingleCrystallline

Polyccrystalline

Amorphous Silicon

4

4×6=24 4

4× ×5=20

4×10=40 0

Ratinngjustificatiion The eAmorphoussSiliconhastheminimum m temperatureccoefficient(K K)thenSinglee Crystalline ethenPolycrystalline.

NoteAmorpphousSilicon nisthebest. 

Cosst: Costtistheseco ondimportan ntfactorafteerthemodu uleefficiencyy;thecostoofthemodulewould affectth heprojectbu udgetespeciiallyiftheprrojectisbig. Forthisreasonthecosttcriterionw willget10 out 10 iin the next decision matrix. The tabble below sh hows the cost of each m module type e per KW produceedin2009: Table18,Cost perWproduced(2009)[37]

Solarrmodule CostPerWp C produced(20 009)

Crystalline eSilicon SingleCrysttalline Polycry ystalline $3.48(maxximum)

%3.29

Thinfilmcells AmorphousSilico on %2.5 5(minimum))

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 64of202 Fromtable18w wecannoticethatthecoostofpolycrystallineand dsinglecrysttallineareve eryclose. ngthatthettargetofthissprojectisttoproduce0 0.5megawattt;thesingleecrystalline willcost Assumin about (500,000 3.48 3 1.74 million $), the polycryystalline will cost 1.6455 million $ and the hous will co ost 1.25 million $; this means usiing Amorphous modulees instead of o Single Amorph D).[37] Crystallinewouldsave0.49million$(about 184,730BHD Table19,decis T sionmatrixfo ormoduleCost Rating gandScore

Crite erionweight (outof10)

SingleCrystallline

Polyccrystalline

Amorphous Silicon

10

10×4=40 0

10× ×5=50

10×8=80 0

Ratinngjustificatiion Thesingleandpoolycrystalline eareveryclo ose, andtheAmorphoousSiliconisnotverycheeap.

NoteAmorpphousSilicon nisthebest. 

Liffespan: Thissfactorisverryessentialw wherethesoolarmodulessshouldbed durableand canbeused dforlong periodinordertoggetthemone eyback.Theelifespancrriterionwillg get8out100inthenext decision matrix.B Bothmonocrystallineandpolycrystaallinecanbeusedforlon ngtimeuptoo30years.SSince,the lifespan nofAmorpho ousThin‐Film mSolarCells islesscomp paredtocrystallinetypess.[35] Table20,deccisionmatrixfordurability y Rating gandScore

Crite erionweight (outof10)

SingleCrystallline

Polyccrystalline

Amorphous Silicon

8

8×10=80 0

8×1 10=80

8×8=64

Ratinngjustificatiion TheAmorphous Siliconhaslowerlifespaan.

NoteSinggleCrystallinneandpolycrrystallineare ethebest. 

Oth herfactors: Allttheaforemen ntionedtype escanbeafffectedbyshaadeanddusttwhereitreeducestheeffficiency. olartypesareavailablein nglobalmarrketandcanbeeasilybriingtoBahraiineasilyfrom mUAEor Theseso through importing them from China. Furthhermore, all of these types requiree little main ntenance (typicallyydrycleanin ngfromdust)[37]. Thetablebelow wshowsthesselectedsolaarcelltype(ffinaldecision n): Taable21,summ maryofdecisioonmatrixesa andselectingthebestsysteem

Critteria Systemtypescore SingleCrystallline Polycrystalline Amorp phousSilicon n Efficiiency 100 70 0 30 Te emperaturecoefficient(K) 24 20 0 40 Co ost 40 50 0 80 Lifespan 80 80 0 64 214 To otal 220 0 244 As shown on the table above, thee selected solar module type iss Single crrystalline (monocrrystalline);tthissystemh hasthebestefficiencyu upto20%,d durablewhicchcanbeussedupto 30yearss,requirestheminimum mareatoprooducethed desiredelectricityorprooducesthem maximum powerfo orfixedland d,requirelittlemaintena nceandavaiilableinthemarket.

3.3Seleectingatracckingsystem(totrackkornottottrack): Inso olarparking system;the ephotovolta icmodulesaaremounted donthestruucturetoke eepthem oriented d in the desiired directio on. The mou nting system m for solar structure s cann be fixed (tthe most common ndesignuseed)ordynam mic(tracking systemwhicchisrarelyused).Thefixxedmounted ddesigns keeptheerowsofmo odulesatafixedangleo forientation n(azimuth)a andatafixeddtilt.Asexp plainedin the precceding chaptter the locattion of the ssun varies during d the co ourse of thee day and du uring the PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 65of202 course yyear. Using the t fixed mo ounting systeem will not collect the maximum suunlight from m the sun becauseethemoduleeshouldbep perpendiculaartothesun ntocollecttthemaximum mamountofenergy. Forthispurposeatrrackingsyste emcanbeussed[120][11 16] w compares between thhe amount of o annual solar radiationn received by a fixed The chart below odule(atlatitudeangle““26degrees””),andtheaamountofan nnualsolarrradiationrecceivedby solarmo amodulewithatraackingsystem minwhichttheanglewaasadjustedffourtimes(aatlatitudea angle“26 umnandspring”,“10deegreesduringgsummer”a and“36degrreesduring winter”); degreesduringautu these daata were takken from tessts that werre conducted d in Bahrain for Al‐Moayyed tower. Adjusting A the tilt angle led to t increase the power output of the module by 3.61 %; this would provide 2][121] meaninggfulboostinenergy.[122

Figure53,An nnualsolarradiationreceivvedbymodullepermeterssquared(forBBahrain)[122]

Afixxedtrackingsystemwillbeusedforrthisprojecttbecausethe eyaresimpleer,cheapera andhave lowerm maintenance requirementscompareddtotrackinggsystems.Ad djustingthe arraysmanu uallytwo tofourttimesperyeearwouldbecostly(laboorcharge)an ndtimeconsuming(708 parkscontaiintwoor more arrrays need to be adjussted). Also, the structurre of trackin ng systems contain mo ore parts (especiaallymovingp parts),andhe encerequireemoremainttenance,som meofthemoovingpartsw wouldfail eventuaallyandthein nitialcapitalcostswoulddbehigher(e extracompo onent).Furthhermore,the etracking ules)toavoidshadecom mparedtofixxedtypes systemsrequiremoreland(spaccebetweentthePVmodu whereleessnumber ofmodules canbefixeddforstructu ureswithtrackingsystem msifthelandareais fixed,an ndhencelesssenergywouldbeproduuced(seeap ppendixC).In nsometiltannglespartoffthecars will not be protecteed from the e sun light ((tracking sysstem); this conflicts c wit h design constraints whereth hedesignmustcoverthe eentirecarppark.[9][123 3][29][116] 3.4 Sele ecting the ty ype of PV solar system m: Firstt of all, the standalone system will not be used d because th he generatorr is unnecesssary part where in the case of o an outage e of the arraay power; th he universityy would gett electricity from f the utility (EEWA). Thus,, the costs of buying aa generator with the required ma intenance (changing generato oroil,inspecction,cleaningandchanngingbearinggs)willnotb becounted ifdifferentssystemis used.[32]. Also o,Off‐Gridssystemwilln notbeused forBahrain Polytechnic solarparkinngsystemprrojectfor thefollo owingreason ns:  TheeworkingdaaysinBahrainPolytechnnicare5dayysonlyperw week;thele ngthofsum mmerand sprringholidaysisapproxim mately4mon ths.Duringttheseholidayysthepoweerwouldnotbeused, and dhenceusin nganoff‐GridsolarsysteemwillprevventBahrain Polytechniccsellingitse electricity

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 66of202 thaat produced by the solar parking syystem for ap pproximatelyy 190 days pper year. The e system pow weroutputw willnotbeuttilizedefficieentlyformorrethanhalfo oftheyearddays.  Selling the eleectricity durring summerr holiday would w help the t utility ((EWA) to co over the mand on elecctricity durinng peak perriods, and prevent any possible po ower cut. increased dem Bahrainpoweerconsumpttionissues. Theerefore,solvvingpartofB Baseed on the ad dvantages and disadvan tages of Grid‐tied system Battery‐leess system and a Grid‐ tied Batttery based system (me entioned in section 2.7 and 2.8), and through using the following f decision nmatrix;theselectedsolarsystemtyypeisGrid‐tiedbattery‐lesssystem. Tab ble22,decision nmatrixforselectingtypeofsolarsyste em(Grid‐tied Battery‐less orBatteryba ased)

NO O

C Criterion

CriterionWe C eight (outof100)

1

Efficieency&poweer output

10

2

Main ntenanceand d rep placement

8

3

Initialcosts

10

4

Co omplexity

6

5

Relianceeonthesysttem

3

Batterry‐lesssystem m NO O Rating(outtof Scorre 10)

Justtification(fo rCriterionW Weight) The T system with w a higheer efficiency produces more m power, p and hence mo re profit (m more electricity savedorsell s totheutilityy). Themainten T anceandreeplacementccostsareoneof the t highest costs c after tthe initial co osts. The sysstem maintenanccecanreturn withalower w nthemanyb back faster. f Higher H initia al costs woould preven nt people and government g investing inn solar proje ects. Also maakes themoneyb t acktimelonnger. The T more co omplex systeem is the harder to deesign andimpleme a entandrequ iremorecossts. Theworking T hoursinBahhrainPolytecchnicarefro om8 am a to 6 pm m which me ans the sysstem would not workduring w winter(only y1hour). The T reliability of the ssystem is very v importtant. However, H th he utility grrid (EWA) is very reliaable supplier(pow s wercutsrareely).Sothereisnoneed dfor abackupbat a terysystem..

Battterybasedssystem Rating g(outof 10) 1

Score

1

10

10×10==100

6

100×6=60

2

8

8×10==80

6

88×6=48

3

10

10×8==80

5

100×5=50

4

8

6×8==72

5

66×5=30

5

5

3×5=15

10 1

3××10=30

Total

347 7

To otal

218

Jusstification(fo forRatingWeight) The T efficienccy of batteryy‐less system m is higher than t battery b base ed system due to it contains feewer components c .Battery‐lessssystemisb better In battery ba ased system m, the batteries need to o be maintained and replaaced checked, c monitored, m m periodically. p Also, the ccosts of che ecking the extra e components c .Battery‐leesssystemissbetter Battery B less requires few wer compon nents compaared to t battery based b system m, and hencce requires less initialcosts.B Battery‐less systemisbe etter Batterybase B dsystemis hardertode esignduetothe number n of required coomponents for f the systtem. systemisbeetter Battery‐less B Inbatterybasedsystemtheeuserwouldhavepowereeven m the iff the utility is out; since iin the batteryy‐less system powermaycu p t.Batterybassedsystemisbetter

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 67of202 3.5 Azim muth and tiilt angle an nalysis – sellection dire ection of the e parking sstructure: Acco ordingtosecction2.11;th heroofazim uthtoolwassusedinthisssectiontoccalculatethe eazimuth angleforthefollowiingdesignop ptionstofinddthebestorrientationforsolararrayss. 3.5.1 De esign option n 1: Parkingrowsorrientedwith hanangle1880°andthessolararraysaremounteddtowardtru uesouth

A

B

Figure54,A)trueAzimuth hdirectionfo rparkingarea aB)schematiicfordesignooption1[124]]

C

Figure555,C)shiftingffirstrow55.52mtothelefftside(alldim mensionsinm meter)D)simiilarstructuretodesign ooption1[125 5]

Figu ure54partA Ashowsthe truesouthffortheparkiingarea(azimuth180°);figure56sh howsthe azimuth angle for the parking area a based on the direcction of the parking row ws (azimuth 148.3°). Design11proposesshiftingthero ows“parkingglines”by(1 180‐148.3=3 31.7degreess)totheleftside;the direction noftherow ws(parkinglo ots)willbettruesouth.FFigure54pa artBshows howthesolararrays

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 68of202 willbeinstalledon theparking structure(ssolararraysssequence)w wherethear rayswillbe installed artC)showsstheeffecto ofshiftingthe efirstrowbyy31.7°. towardttruesouth.Figure55(pa Changing the orientation of the parkinng rows (parrking lines) in order to make the PV P arrays facingth hetruesouthrequireshiftingthefirrstrow(and theremainingrows)by 52.52meterrs(figure 55part C);thisisim mpossibletoiimplementaatBahrainPo olytechnicbe ecauseitwilllreducethe enumber ofcarpaarksbyapproximately25 5%(estimati on)especiallyBahrainPo olytechnichaasanissuerregarding thelack ofthecarp parking.This conflictswitthdesignco onstraintswh herethenum mberofparkksshould not be reduced. Th hrough usingg an online calculator; the t amount of solar irrradiance received by design11(azimuth18 80°andtilt2 26°)is2,2600 kWh/m ;ssincedesign3receive2,1183(kWh/m m )andit canuse muchmoreemodules(b becauseasu fficientdistaancebetwee enthesolar arraysisreq quiredto 3wouldprod ducemuchm morepower (seethe avoidedshadeindeesign1).Thissmeansdessignoption3 following sections). It is not a practical so lution changging the orie entation of the parking rows to mentedandanalyzedfurther. azimuth180,andheenceitwillnotbeimplem 3.5.2 De esign option n 2: Paarkingrowso orientedwitthanangle1148.3°andth hesolararra aysaremounntedtoward dsouth

Figure56,,Azimuthangglefordesign2(azimuth14 48.3)[124]

The sequence of o the arrays of design 22 is similar to o design 1; the differen ce between the two designs that the aziimuth angle was changeed. The azim muth angle is equal to aazimuth angle of the parkingrows(148.3°°or31.7°aw wayfromtrueesouth)asshownabove.Thedropinnsolarradiattion: E

E E@

Numb er of degreees from true e south 5

1

. °

E

1

31.7 5

1.1%

0.93E

1.11%

In this design the t solar radiation dropps by 7%. This T system is not suitaable projectt for the followingreasons: PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page6 69of202 

There iss no distance e between tthe panels, and a hence th he size of thhe module should be reduced d(lesspower)toavoidsshade,andthetiltangle ofthearrayyisverylimited(the greater tiltangleme eansmoresshadewould dbereflectedfromtheffirstmoduleintothe second).  Partoftthecarparkw willnotbec overed;themainfunctio onofthestruuctureisnottapplied.  Thedesignisnotverrybeautiful((wouldeffecctontheaestheticaspeccts).  Itisnotapracticalssolution(makkingtheazim muthcloserttosouth);beecauseitred ducesthe numberofmodulesanddecreassesthepowe ermore. 3.5.3 De esign option n 3.1 – Single Slope: SingleSlope eparkingstru ucture(parkkingrowsoriientedwithanangle1488.3°andthesolar arraysarremountedtowardwesst(238.3°‐18 80°=58.3°aw wayfromtruuesouth)

A

C

B

Twosidepar T king w Sideview

Onesidepark O king

Figuree57,A)Azimu uthangleforp parkingarea((design3)B)a arraysorienta ationdesign33onerowC)single slopeparkinggstructuresid deview[124]]

Figure58,desiggn3(oneside eparking)[12 25]

In this design (design ( 3.1, single slop e); the arraays are placed perpenddicular to th he actual direction n of parkingg area (azimu uth 148.3°). The arrays are mounted on the strructure as sh hown on figure577partB(mo ountedtowarrdwest).Botthdirectionsswilluseazim muth238.3°°fortwoside eparking structurewheretheearrayswill beawayfro mtruesouthby58.3°(a asshownonnpartC).The edropin s slope parking str ucture (all the t arrays are placed tooward west azimuth solar radiation for single 238.3°): 58.3 3 E@ 1 1.1% 0.872E E . ° 5 hisdesignthesolarradiationdroppeddby12.8wh hichishigherrthandesignn2by5.8%. Inth PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page7 70of202 3.5.4 De esign option n 3.2 – Doub ble slope: DoubleSlopeparkingstructure e

B

A

Twosiddeparking Sid eview

Figu ure59,)A)arraysorientatiiondesign3ddoubleslopeB B)doubleslop peparkingstrructuresidevview

Inth hisdesign,th heleftsidep parkswillha vethesame eorientationofdesign3 .1(singleslo ope).The difference appears in the right side parks w where the arrrays will be e mounted tooward east (azimuth 58.3°) so the arrayss will be away from tru e south by 121.7° (“180 0°‐58.3°= 1221.7°”) and the t solar radiation nwilldecreaasemore;the edropinsollarradiation: E@

.

E

1

121.7° 5

1.1%

0.73E

The drop in in solar s radiatio on due to c hanging the azimuth an ngle is 27 %;; however, using u the doublesslopingstruccturehelpin nincreasing thesystem productivity throughcattchingthesu unasit’s risingan ndsetting;th hebestway istoanalyzeethesolarirradianceda atatoselect theoptimum mdesign andorieentation(dessign2or3). Design33(singleslop peanddoubleslope)has manyadvan ntagescomparedtodesiggn2: 

  

Thewidthofftheroadis6meter;thiismeansthe eshadingwouldnotaffecctthesystem m. Therefore,thenumbero ofthemodullesthatcanbeusedincreases,andthhepowerou utput o. increasealso Theentireo oftheparkw willbecovereed,andhence emakingsurrethatthesyystemprovid des doubledutyy(coveringca arsandprod ucingelectriicity). Thisdesigniismuchmorebeautifulccomparedde esign2. Designingawatermanagementsysttemismuchsimpler.

o select the e final designn is to compare betwee en the energ rgy received by each The best way to ordifferentttiltangles. designfo 3.6 Fina al design: Thecharrtbelowsho owsannualso olarradiatio nreceivedb bydesign2fo ordifferentttiltangles:

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page7 71of202

Figu ure60,Annuaalsolarradiattionforazimuuth148.3degreesanddiffe erenttiltangl es(Design2)[74]

The chart below shows annual solar radiattion received d by design 3 (single sloope) for diffe erent tilt angles:

Figure61,Annualso olarradiation nforazimuth 238.3anddiffferenttiltangles(Design33–Singleslop pe)[74]

Table233andchart6 62compareb betweendessign2andde esign3: Tab ble23,Totalssolarirradianccereceivedan nnuallyforde esign2and3 [74]

Totalsollarirradianccecollecteda annuallyby moduleford differenttilttandazimutthangles / ) Tiltangle Tiltt0° Tilt2.5° Tillt5° Tiltt7.5° Tilt10° Tillt11° Tilt26° Tiilt41° Desiign3‐azimu uth 77.17 218 82.27 21883.45 21 161.49 20 056.46 2147.18 2159.29 21668.69 217 238.3 3°(singleslo ope) Design2(azimu uth 2147.18 216 67.5 21885.66 220 01.73 22 214.7 22219.23 22 230.89 21 139.35 148.3°) 0% Difference% D 0.3 38% 0.778% 1.1 12% 1.4 46% 1. 61% 3..11% 3.87% PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page7 72of202

Figuree62,comparisonaboutannualsolarirraadiancefordifferenttiltfo ordesign2& 3(singleslop pe)[74]

The table and charrt below sho ow annual ssolar radiatio on received by design 33 (double slope) for differenttiltangles: Table244,Totalsolarirrradiancereceivedannually fordifferentttilt&azimuthangles(designn3doublesloping)[74]

Design3‐Do D oubleslop(ssomerowsaretowardeaast“azimuth h58.3°”andsomerowsttowardwestt)( / ) TiltAnglee Tilt0° Tilt2.5° T Tilt5° Tilt7.5° T Tilt10° T TTilt11° Tilt26° T Tilt41° Azimu uth58.3°(Eaastrows) 2147.18 2131.1 22113.51 2093.45 2 2071.59 20061.87 18 890.96 16 677.86 Azimu uth238.3°(W Westrows) 2147.18 2159.29 2 22168.69 2177.17 2 2182.27 2 183.45 21 161.49 20 056.46

Figurre63,Totalso olarirradiancereceivedannnuallyforde esign3double eslopping(boothdirections)[74]

Figu ure 60 showss the total solar irradiannce collected d annually by module foor different tilt t when the azim muth angle is i equal to 148.3 ° (forr design 2). Figure 61 shows the ttotal solar irrradiance collected dannuallyb bymodulefo ordifferentttiltwhenthe eazimuthangleisequal to238.3°(fo ordesign 3‐singleeslope).Tab ble23andfiggure62com parebetwee entheamountofsolarirrradiancerecceivedby design 22 and 3 (sin ngle slope) for each tillt angle; tab ble 23 show ws also the percentage of solar irradiancceincreaseaasresultofu usingdesign 2insteadof3. PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page7 73of202 Tablle24andfiggure63show wtheamou ntofsolarrradiationrecceivedbydooubleslopesstructure (design 3); in this design, d some of the pa rking rows (module arrrays) are moounted towa ard west (azimuth h238.3°or5 58.3°awayfrromtruesouuth)andsom merowstowa ardeast(azim muth58.3°o or121.7° awayfro omtruesoutth).Thewestsidemodu lesreceivem moresolarirradiancebeccausetheya arecloser totruessouth;theso olarirradianceforthem modulesposittionedtowardeastdecrreasesasthe emodule tiltangleeincreases,aandtheoptimumtiltis00degrease(m modulesfixedhorizontal ly). Indesign2the azimuthanggleequals14 48.3 °(31.7 °awayfrom mtruesouthh);inthisde esign,the azimuthangleisclosertotruessouth.Thisleedtoincreassethesolarirradiancecoomparedto design3 (single sslope) by 0.3 38% as a minimum to 3 .87 % as a maximum. m The amount oof solar irradiance is constanttwhenthep panelisfixed dhorizontallly.Itisalreadymentione edinthepreecedingsectionsthat design22willnotbeusedforthisproject;h owever,the eamountofsolarradiatiionwascalculatedin orderto oproofthatttheincreaseintheamouuntofsolarrradiationisn notsufficienttcomparedttodesign 3(singleeslope).Ind design2,lesssnumberof modules(ab bouthalf)ca anbeusedcoomparedtodesign3 inordertoavoidshaading.Fromtable23themaximumin ncreaseinth hepowerouttputcanbeobtained fromdeesign2is3.8 87%andasssumingdesiggn2consist ofhalfnum mberofthe moduleofd design3; thereforre design 2 will w produce e about 48.11% less powe er compared d to design 33. (See appe endix “A” shadinganalysis). Tosselecttheoptimumtiltan ngleforsola rparkingstructuretwoffactorsshoulldbeconside ered;the firstoneeisthemaximumpowerproduced;tthiscanbeo obtainedthro oughselectinngthetilt11 1degrees where 22,183.45 (KW Wh/m ) can be receivedd by the mo odule per year; this tilt aangle repressents the optimum m summer setting s in Ba ahrain. Also, increasing the tilt angle requires i ncreasing th he entire height o of the structture to avoid d collision oof the vehicle e with struccture; this w will add an additional capitalccostformateerial,andinccreasesthew windloadbe ecausethew windloadis directlyprop portional to the h height of thee structure. However, seelecting an angle a less than 10 degreees preventss for rain runoff,aandself‐cleaaningforthesolararrayssandalsode ecreasethessolarirradiannce.Thetiltangle11 degrees represent a a compromise where it is not a bigg angle like 26 degrees and grater then 10 degrees,andprovidesthebestssolarirradiannce. For thedouble sideparks,u usingasingl eslopestru ucturewould dbeunsafeaasaconsequenceof doublinggthearraysareaandinccreasingthe heightofthe estructure;whichleads toincreasethewind loads. TThis would reequire usingg a very stroong structure e to withstand wind loaads, and hen nce using furtherm material(inccreasingcapitalcost).Theesingleslopedesignisnotapracticaalsolutionfo ordouble sidedpaarksduetosafetyandco ostconstrainss. Usin ngthedoubleslopingde esign(design3)wouldprrovideasolu utionforwinndloadsandproduce muchm moreenergyccomparedto odesign2.Foorthewestrrowstheopttimumtiltanngleis11degrees(as discusseed before). For east rows, the tilt 11 degrees receives less amountt of solar irrradiance compareed to the tilt angles (0°°, 2.5°, 5°, 77.5° and 10°° respectivelly). Using thhe tilt 0 deggrees will provide theoptimum mpowerou utput;howevveritwillpreventthesyystemfromrrainrunoff, andself‐ he amount of o solar irraddiance receiived in 0 cleaningg for the sollar arrays. The variance between th degreestiltand5deegreestiltis1.5%whichhissmall(bu utnotneglig gible);buttthetilt5deggreeshas some aadvantages regarding cleaning c thee system, minimizing m the t requiredd maintenance and increasin ngthepoweeroutput(co omparedtottilt11degree es).Theeasttrows(solarrarrays)willbetilted

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page7 74of202 5degreeesfromthe horizon.The eselectedst ructureiscaalleddouble‐‐slopingstruucture(twossidesolar structurewithdifferrentslopes). Thetablebelow wshowsthesspecificationssofdoublessideparks(finaldesign): Table25,fi naldesignforrparkingsysttem

Designna ame:double slopingstruccturewithdiifferenttilt Azimuth(truesouth Tiltangle(moduletiltfrom Parkingrrows 180°) 1 horizo on) Westparkin ngrows 58.3°from mtruesouth h 11°° Eastparkinggrows 121.7°fro omtruesouth h 5° The selected deesign (double e sloping) is not a new idea; it is im mplemented by some co ompanies ow: suchas,SolaireandPetrasolarinBahrainassshownbelo

Figuure64,(A)dooublesloping designimpleementedbySSolaireCompaany[126](B) doubleslopingdesign implemeentedbyPetraasolarinBahraininAwali clubparking(picturewastakenbyme))

As sshown on piicture 64; in n the projectt implementted by Solairre, the westt side of the e parking structure(leftsidep parks)istilte edandtheri ghtsidestru uctureisapp proximatelyhhorizontal.T Thesame wali project but in opposite way w where the right side thing is implementeed by Petra Solar in Aw d and the lefft side is ap proximately horizontal. The compannies selected d the tilt structure is inclined basedonthelatitudeand dazimuthanngle. anglesb 3.7 Heig ght of the ssolar parkin ng structurre: The picturebelo owshowsthe eselectedheeightforthe estructurew wherethemiinimumheigghtofthe s is 2201 1 mm whichh follows Bahrain guide elines (minim mum 2200 mm). In solar arrray (west side) addition n,theheightofthesolarparkingsystteminAwaliis2210mm..[77]

Figure65,heeightoftheso olarstructure e

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page7 75of202 3.8 Parrking area m measureme ents: Thepictturebelowsh howsBahrainPolytechniicstudentsccarmap(inclludingthepaarkingrowsnumbers andsequencenumb bers):

(1) ( 2) ( 3)

(4) (5)

(6) (7) (8) (9)

(10) (11) (12) (13) (14) (15) Figure66,B BahrainPolyteechnicstuden ntscarmap(m middlearea)

Thetabllebelowsho owsthenumberofparks perrow: Table26,numberofparksineachrrowofthemiddlearea(thesttudentsparkinngarea)

Parkinggrow Row w1 Row w2 Row w3 Row w4 Row w5 Row w6 Row w7 Row w8 Totaal

Numberof parks Parkingrow P 38 Row9 48 Row10 48 Row11 56 Row12 56 Row13 61 Row14 61 Row15 57 Row16 425parkks Total Total:4225+283=708parks

Numbberofparks 54 47 44 35 32 27 24 20 2883parks

Totaalnumberoffentirestude entsparksiss910parks;tthenumberoftheparks inthemiddleareais 708(selectedareafforthisproje ect).Thisproojectwillpro ovideaproposalforsolaarparkingsyystemfor oftheentirestudentsparkingarea. 77.8%o PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

(16)

Page7 76of202 Thefollo owingtablesshowsthediimensionsofftheparkinggarea(measuredusingaameasuringttape): Tablee27,Parkdimensions

Parkdimensionns(seepicturreonnextpage) Parklength 5100mm Parkwidth 2430 100 2 100 2 Parklinetthickness(W Whitelines) 100mm Roadwidth 6000mm

2530 0mm

To d double checkk the accura acy of measuurement an online calcu ulator was u sed to doub ble check thedimeensions: Figure67,area aofparkingroow1(willuse edtofindparkswidth)[1227]

ure shows th he area of pparking row 1; from thiss area we caan double check the The above pictu edlength5.11m): widthoffthepark(ussingmeasure Area 490.436 from m software llength 5.1 m mesured widh

widh requ uired number of parrks 38 490.436 2.53 m 5.1 38

Figure68,area aofparkingroow1(willuse edtofindparkswidth)[1227]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

77of202 Page7 Figu ure70showsstheareaoffparkingrow ws4&5;fro omthisareawecandouublecheckth helength ofthepaarks(usingm measuredwidth2.53maandtheabovveequation). Length h

Width

Area Parks num mber

1455.353 2.53 3 56 56 6

5.14 ≅ 5.1 m

Thepicturesbelowsshowthedim mensionsof BahrainPolyytechnicstud dent’scarpaarks: Figure669,dimension nsofonepark Figure700,dimensionssoftwoparkss

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page7 78of202 3.9 mod dule selectiion: Seleecting the op ptimum sola ar panel braand is very important i aspect becauuse it is a lo ong term investment. Selectin ng a module e from big bbrand names would nott give a gre at change in n quality heprices becauseemostsolar modulesaremadewithhsimilarmaterialsandccomponentss,andalsoth wouldbeveryclose(SunpowerCompanyis exception).[128] Thebestt10compan niesthatman nufactureso larmodules in2014(lasttquarter): 1. TrinaSolar.. olarOne. 5. JASolar. 9. HanwhaSo 2. YingliGreenEnergy. 6. SharpSolar. 100. SunPowerr.[129] 3. CanadianSolar. 7. Renesola. 4. JinkoSolar.. 8. FirstSolar. donIHSwhiichistheleaadingsource eofinsight,a analyticsanddexpertiseiincritical Thisslistisbased areasth hatshapetoday’sbusine esslandscapee.Whileselectingtheso olarmodule sitisrecom mmended to use o one of thesee companiess. There are also, severaal big brandss out of thiss list such ass LG and Suntech(themostp popularbran ndsintheUKK);theproje ectimplementedinAwaaliusesSunte echsolar ws list of com mpanies thaat manufactu ure solar moduless (polycrystaalline) [129].. The table below show moduless: Table28,aalistofsolarccompanieswiithlinksforhundredsofm modulesdatassheets[128]

NO 1

Companyy SSun‐PowerSo olar

Country NO O Company Country USA 16 6 GE G USA A AsssembledinCCanada 2 CanadianSo olar 7 Hyundai Kore ea 17 butmadeinCChina 3 SSun‐techPow wer China 18 8 Kan neka Japan,USA,,Belgium 4 A AstronergySo olar Germanyy 19 9 Mitsubish hiElectric Japa an UnitedStat es, 5 Solar‐World 0 NB‐S Solar Chin na 20 Germany,Can G nada 6 Topoint China 21 1 Sch hott USA A Norway,Singa apore,USA 7 LG Korea 22 2 RE EC 8 Solar‐land d China 23 3 RiT Tek Taiwan 9 Sharp USA 24 4 Samsung SouthK Korea Japan,Canadda, 10 P Panasonic/Saanyo 25 5 Solon USA,Gerrmany Mexico,Germanny,USA 11 Power‐Up p China 26 6 Triina Chin na 12 U Uni‐SolarMo odel USA 27 7 UP PG Chin na 13 EcoSolargyy China 28 8 Westinghouse USA A 14 Evergreen n USAandCh ina 29 9 Yin ngli Chin na 15 Eoplly China 30 0 BP B China,Ind dia,USA Tocompaarebetweensolarcompa aniesandprooducts(hundredsofcatalogues“dattasheets”): 1. h http://www.w wholesalesolar.com/solaar‐panels 2. h http://www.ttheecoexperrts.co.uk/wh ich‐solar‐pan nels‐are‐bestt‐how‐muchh‐should‐i‐expect‐pay Baseedontheab bovetable(ssolarmanufaacturerslist) andthrough hanalyzingaalltheavaila abledata sheetso ofthemodules;themosttcommonsttandardsizessofmodulesarelistedbeelow: Table29,Com T mmonStandarrdModulesize es

1940 0 980 798 1559

Co ommonStandardModuleesizes(LenggthWidth)inmm(samplees) 1 1640 980 1480 980 194 40 980 1480 67 0 1000 1640 8 826 1638 1318 994 1046 1559 1020 67 0 808 1580

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page7 79of202 Theewidthofthecarparkiss2.53m,anddthelengthis5.1m.Throughanalyzzingparkdim mensions and thee sizes of the modules (by ( hand skeetching and using excell software too measure the gabs between n the panelss); it was fo ound that thhe standard sizes, 826mm 1,638mm m (Canadian n module model Q Quartech CSS6V‐225M), 798mm 1,,559mm (Su unpower mo odule modeel X20‐250‐B BLK) and 808 1,5580 (Suntech h module model m PLUTO O200‐Ade) provide the most m coveraage for parking area. Also, these moduless are from top t brands, and hence these modu ules were seelected (thre ee design options)). The priceofSun ntechmodule(modelPLLUTO200‐Ade e)is400Eurro(454$);thhismodulep produces 200 wattt, and the price of thiss module peer watt is 2.27 $ [130]. Sunpower ddo not sell the t solar module separately; it forces the e costumerss to install the modules by it is aut horized dealers. The average cost of the module and d installationn for Sunpow wer compan ny is $5.59 pper watt; thiss means, the costtumer will pay p more ab bout the do uble the priice compare ed to Suntecch company without doublinggthepowerr.Theinstalla ationprocesssisnotveryyexpensive;itwouldnootexceed0.25dollar per watt (about 19 Bahraini din nars per moodule) [131]. Canadian Company C sel ls the solar modules ompaniesintheglobalsoolarmarket(forboth withverrycompetitivveprices;itisoneoftheecheapestco monocryystalline and d polycrystallline types). The Canadiaan solar module model “CS6P‐235PX” is the second cheapest module in the e market ab out 0.75 do ollars per wa att. The pricee range of Canadian C 75dollarto1 1.1dollarpeerwatt;the pricevariesbasedonthhemoduleeffficiency, modulessisfrom0.7 module sizeandtyp pe(monoorpoly).AccorrdingtoAcossolar(websitte)thepriceofCanadian nmodule QuartechCS6 6V‐225Mis0 0.8dollarpeerwattwhich hisoneofth hecheapest typesinthe emarket. modelQ [132]Th hefigurebelowshowsth hebranchessofCanadian ncompanyintheworld(thenearesstbranch forBahrrainislocatedinAbuDhabi):[133]

Figure71,Can F nadiansolarb branches[133 3] 3.9.1 De ecision matrrix (selectin ng the modu ule company y):

The following taable comparres betweenn the specifiications of the three seelected modu ules (the m dataa sheet “see e appendix E”). Also, thhis table selects the data aree extracted from the modules moduletypebasedo onselectioncriteriaform moduletype emanufacturrer(section22.17):

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page80of20 02 Table30,decisionm matrixforselectingModuleCompany(basedonthedataasheets)[133][134 4][135] Criteerion

Efficiiency

Powertoleerance(∓)

Critterionweight ((outof10)

Values, Rating and Score Caanadian Suntecch Sunpower 16.63 %

15.7 % %

10 0×7=70

10×5=5 50

%

. %

10

9

9××10=90 .

Tempeerature coeffficient

4

NominalOp peratingCell Tempeerature

8

Wind dload

9

Quality((ISO9001 certifiicates)

Durabilitty:61215 reliabilitystandard(IEC)

Performanccewarranty

%/

4 4×7=28

9×7=6 63 .

%/

4×8=3 32

Rattingjustification

Notes

Themainaimofth hisprojectistoproducethemaximum menergybythesysttem;theonly companythatIfou undthatsellsmodu uleswithefficiencyygreaterthan20%isSunpower. (SSunpoweris The efficiency of Sunpower is higher than the two modules m by 3.67 %; % using the th hebest✓) 10×10=100 Sunpowermodule eswouldboosterth hepoweroutputb by22%compared toCanadian, and29.3%comparedtoSuntech. unpowerand producemorepowe er;Sunpower (Su % Allthemodulehavvepositivetoleranccewheretheycanp andCanadianmod dulescanproduce1 105%ofthementio onedpower.Since,,Suntechcan Caanadianare 9×10=90 produceonly102.5 5%ofthementioneedpower. th hebest✓) The drop of powe er production incre eases as the temp perature coefficient t increases (I . %/ maintheabsolutevalue).ThedropoffSunpowermoduleeswillbelessbecau useithasthe (SSunpoweris ture coefficient. Sin nce, the Canadian modules will have smallest temperat the greatest th hebest✓) 4×10=40 powerdrop. 20.3 %

8××10=80 8×10=8 80 8×10=80 2 2500Pa 2500P Pa 2500Pa 9××10=90 9×10=9 90 9×10=90 ISO9001certtificates ✓ ✓ ✓ IEC61215Reliabilitystandard

‐ ✓

From97 to80%

From9 95 to80% %

From95 to87%

10 0×7=70

10×6=6 60

10×9=90

10

AllofthesemodulesaresuitableforB Bahrainenvironment.

Allofthesemoduleshavehighresistaancetostrongwind dloads.

AllCanadian,SuntechandSunpowermoduleshaveISO9001:2008andISO O14001:2004 certificates.  Canadian modules have sevveral durability certificates IEC 6121 15, IEC61730, CO,andCQC. IEC61701ED2,UL1703,IEC62716,CECListed,JET,CE,MCS,KEMC moduleshaveIEC61215,IEC61730.  Suntechm  SunpowerhasUL1703,IEC6 61215,IEC61730,IEC62716andIEC6 61701. Allthemodulesaretopbrands;sinceCanadianmodulessaremoredurable..  Canadianpowerperformancce:25yearlinearp poweroutputwarrrantyfrom97 %to80% %.  Suntech power p performancee: 95 % first five years, y 90 % first 12 2 years, 85 % first18ye earsand80%first2 25years.  Sunpowerpowerperforman nce:95%first5yeaars;thentheperfo ormancedrop by‐0.4% (lineardrop).The powerafter25yeaarsisequalto87% %.(Sunpower hashigherefficiency).

(C Canadianis th hebest✓)

(SSunpoweris th hebest✓)

Page81of20 02

Criteerionweight (o outof10)

Criterrion

Productw warranty

Moduledimensions

Cosst

10

10 0years

5years

10 0×7=70

10×5=5 50

826 6

808

1638

15 580

10 0×9=90

10×7=7 70

0.8per 0 watt

2.27peer Watt

10×10= 100

50 10×5=5

688

545

10

Availability(Bahrain)

Total

10

Values, RatingaandScore Caanadian Suntecch Sunpower

Rattingjustification   

Notes

Canadian:10yearproductw warrantyonmateriaalsandworkmanship. (SSunpoweris 5yearmaterialandworkmanshipwarrranty. Suntech5 th hebest✓) Sunpowerprovidecombined dpowerandprodu uctdefect25yearccoveragethat 10×10=100 modulereplacemen ntcosts. includesm 798 1559 Thetotalareaofe eachparkequals 2.5 53m 5.1m 12..903 ;eachparkwillcoverby ninemodulesofan nytype. (C Canadianis  TheCanadianmoduleswillccover94.4%ofthecarpark. 10×5=50 th hebest✓)  TheSunte echmoduleswillco over89%ofthecarrpark.  TheSunpowermoduleswillcover86.7%oftheecarpark.  Canadian company is one of the cheapest solar manufacture ers; it is the 5.5per power.UsingCanad dianmodules cheapest typecomparedto SuntechandSunp Watt projectinitialcostbyy85%. insteadoffSunpowermoduleeswillreducethep (C Canadianis  Suntech modules are relatiively expensive (ab bout double price of Canadian th hebest✓) module). 10×1=10 oject costs five tim mes with only  Sunpower is very expensivee; increases the pro easeinthepowero output. 22%incre  Sunpower has Branch in Middle‐East specifically Masdar Citty, Incubator Building, Office201F,AbuD Dhabi,UAE,Tel:+9 97122458303.So otheycanbe availableinBahrain.[136]  Canadian has Branch in UAE in Injazat Buildin ng, Mohammed Bin n Zayed City, ‐ ✓ Office 321, 3 Abu Dhabi, UAE, Tel: +9 971 02 698 5360 E:mail: inquire.m [emailprotected][137]  Thesolar projectimplementtedinAwaliusesSSuntechsolarpanells,andhence theSunte echmoduleswillbeavailableinBahraiinifweorderthem. 650 Thesselectedcompan nyisCanadian‐Model:QuarttechCS6V‐225M M 25years

Page8 82of202 The picturebelo owshowsho ow18modulleswillcovertwocarparks;themodduleswillcovermost parks. Howeever, the to otal length oof the park that will not be coverred is 18.6 cm; the of the p crossbeaamsandpurrlinswouldco overmostorralloftheuncoveredare ea. Figgure72,solarrmodulescovveringtwoparks

Thetablebelow wshowstotalareacovereedbythemo odules(requiredareafor rpowercalcu ulations): Table31,Total areacovered dbythemodu ules

Len ngth Parkingrrow Row11 Row22 Row33 Row44 Row55 Row66 Row77 Row88 Row99 Row100 Row11 Row12 Row133 Row144 Row155 Row166 Total

Moduulesareaperpark width h numberr of moduless per park 0.826 1.638 1 Numberofparks Module esareaperp park 38 48 48 56 56 61 61 57 11.196738 54 47 44 35 32 27 24 20 708pa arks ‐

9

12.176892 2 m Moodulesareap perrow 462.721 1896 584.490 0816 584.490 0816 681.905 5952 681.905 5952 742.790 0412 742.790 0412 694.082 2844 657.552 2168 572.313 3924 535.783 3248 426.19122 389.660 0544 328.776 6084 292.245 5408 243.53784 8,621.24 4

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page8 83of202

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 13

14

15 16 17

3.9.3 Su ummary of tthe selected d module speecificationss: Table32,Su ummaryofthheselectedmo odulespecificcations[134] SSpecification ns MechhanicalProp perties ModuleBrandname CanadianSoolar Modu uleModel QuartechCS6V V‐225M M Moduledimeensions(L W) 0.826 0 1.6338 m SolarCell 50Monocrystallinne5 10 SSolarCelldim mensions(L W) 0.156 0 0.1556 m Frameematerial Anod dizedaluminnumalloy Fron ntcover 3.2mmtempereedglass W Weight 16kg Effiiciency 16.63% Powerto olerance(∓) 0 to 5% % Temperatu urecoefficien nt 0.41%/ Nom minalOperatingCellTemp perature 40 to 885 Win ndload: 2500Pa Qualityan ndDurabilityycertificatessandProducctwarranty  ISO90 001:2008/Q Qualitymanaagementsysttem.  ISO/TSS 16949: 2009 / the auutomotive industry qualiity managgementsyste em. Q Quality(ISO9 9001certifica ates)  ISO 14001: 1 2004 / Standdards for environment e tal managgementsyste em.  OHSASS 18001: 2007 2 / Inteernational standards s f for occupationalhealtth&safety. ndother IEEC61215/IEC61730:VD DE/CE/JET//MCS Duraability(IEC)sstandardsan certtificates IEC617 701ED2:VDE/IEC6271 6:VDE/PVC CYCLE(EU) Producctwarranty 10yearp productwarrrantyonmatterialsandw workmanship p. 25yearlinearpowerroutputwarrrantyfrom9 97%to80% % Performancewarrantyy (lineardro p).

Figure73Can nadian“QuarttechCS6V‐225M”powerw warranty[1344]

ElecctricalProperties 18 19 20 21 22 23 24 25 26

N NominalMaxx.Power(Pm max) JuncttionBox Connectors Caables O Opt.Operatin ngVoltage(V Vmp) OperatingCurrent(Imp p) Maxsyystemfuse OpenCircuiitVoltage(Voc) ShortCircuitCurrent(Issc)

225W IP‐‐67(thebestttype) FriendsPV2a F (IEC),FrienddsPV2b(IEC/UL) 4 mm (IEC),900m mm(35.4in) 26V 8.67A 15A 31.8V 9.19

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

84of202 Page8 3.10 Fo orce calcula ation: Themainstepsu usedtocalcu ulatetheloa dsonthepaarkingstructu urearementtionedinsecction2.2 3.10.1 W Wind load ca alculation:  Steep1(determ mineriskcate egoryofsolaarparkingstructure): The first step is to determin ne the risk ffactor of the e solar parking structuree. The table below is d from ASCEE standard document; d tthis table claassifies the risks into 4 categories, and the obtained higher ccategory number means more riskky structure. The solar parking sysstem projectt will be implemeented in Bah hrain Polytecchnic in the students paarking area where w it reppresents an essential facilityaandanyfailu urecouldposseasubstanttialhazardtothecommunity(deathhorinjuries)..Therisk categoryyfortheparkingsystemisdetermineedtobe(RisskCategory4 4).[138] Table33,RiskCateggoryofBuildingssandOtherStruucturesforFlood,Wind,Snow, Earthquake,anndIceLoads(page2)[139]

UsseorOccupa ancyofBuilddingsandStrructures Buildings and oth her structure es that reprresent a low w risk to hum man life in tthe eventoffailure. Allbuildingandottherstructurresexceptthhoselistedin nRiskCatego ories1,3,4 Buildingandotherstructures, thefailureoofwhichcouldposeasubstantialriskkto humanlife. Buildingandotheerstructures,,notincludeedinRiskCaategory4,withpotentiallto cause a substanttial economiic impact annd/or mass disruption of day to dday civilianlifeintheeeventoffailu ure. BuildingsandotheerstructuressnotincludeedinRiskCattegory4(inccluding,butnnot limitedto,facilitieesthatmanu ufacture,proocess,handle,store,use e,ordisposeeof such ssubstances as a hazardous fuels, hazaardous chem micals, hazardous waste,, or explossives) contaaining toxic or explosi ve substancces where their quanttity exceedsathresho oldquantitye establishedbbytheautho orityhavingjjurisdictionaand issuffficienttoposseathreatto othepubliciifreleased. Buildingsandotherstructuresdesignateddasessentia alfacilities. Building and other structure es, the failu re of which h could pose e a substanttial hazard dtothecom mmunity. Buildings and other structurres (includinng, but not limited to, facilities t hat manufacture, pro ocess, handle, store, usse, or dispo ose of such substances as hazard dousfuels,h hazardousch hemicals,or hazardousw waste)conta ainingsufficieent quanttities of high hly toxic sub bstances whhere the quaantity exceeds a thresh old quanttityestablish hedbytheauthorityhavvingjurisdictiontobedangeroustotthe publiccifreleasedaandissufficienttopose athreattothepublicifrreleased.

    

  

RiskC Category 1 2

3

4

Steep2(Determ minethebasiicwindspeeed,V,forriskkcategory4)): Inth hisstep,tod determineth hebasicwinddspeedforrriskcategoryy4;thewinddhazardmap p(Figure. 26.5‐1B in ASCE do ocument) is used to findd the wind speed for th he desired llocation and d for risk wever,thisffigureshowssUnitedStatteswindmaponly;sothhepeakwind dloadof categoryy4only.How Bahrain willbeused d.According toBahrainw weatherwebsite(MinisttryoftranspportationKin ngdomof mumwindsp peedinBahrrainin2015 was33knotts(61.17 Km m/hr);ithappenedin Bahrain));themaxim April, and led to strructure faailure (see e article in Al‐W Wasat Ne ewspaper http://w www.alwasaatnews.com//4601/newss/read/98132 28/1.html). According to my we eather 2 website (Country ovverview in Bahrain); B in recent yearrs the maxim mum sustainned wind speed that Bahrain exposed to o happened in January where the wind speed d has reacheed 111 Km/ /hr. The maximumwindspeeedwillbeselectedtobe thebasicwindspeed.[1 140]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

85of202 Page8 

Steep3:(determ minewindlo oadparamet ers):  Winddirectionalityfacctor(K ).  Exposureccategory(B,CorD).  Topograph hicfactor(K ).  GustEffecctFactor(G).

K ): 1. Winddirectionalityfactor(K Table34,WindDiirectionalityFFactor(page2 250)[139]

SStructureTyype

DirectionalittyFactor

Builldings:  MainWindForceResistingSystem.  ComponenttsandCladdiing.

0.85 0.85

Arch hedroofs

0.85

Chim mney,Tankss,andSimilaarStructures  Square.  Hexagonal.  Round.

0.9 0 0.95 0.95

Solid Freestaanding Waalls and Solid Free estanding aand Attach hed Signs. Open Sign nsandLatticceFrameworrk.

0.85

TrusssedTowerss:  Triangular,ssquare,rectaangular.

0.85

Explanato oryimage

The table abovee shows the e directionallity factor K for different structurres. To estim mate the amount ofwindloaad,thestructturetypeis assumedto oSolidFreesttandingandAttachedSiigns.The vertical columnsrep presenttheSSolidFreestaandingandth hepanelarra ayrepresenttstheAttach hedSigns (the inclination of the array willl analyzed laater on). Givven this assu umption, thee wind direcctionality factorisequalto(K 0.85).[1139] 2. Topo ographicfactor(K ): The topographiccfactorisussedtodeterm minetheefffectofuneve enlandsontthewindspeedsuch astheeeffectofhillsonthewind dspeedthattpassthrougghaland.Fo orthisprojecct,itisassum medthat Isatown nisaflatregionenvironm ment,andheence,thetop pographicfacctor(K )= 1.[139]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page8 86of202 3. GusttEffectFacto or(G): Gustt Effect Facttor (G) for a a rigid buildiing or otherr structure iss permitted to be taken n as 0.85 (G=0.85).[139] osurecatego ory(B,CorD D): 4. Expo Table35,Expo T osureCategory(page251) [139]

Exp posureCateggory

Definitioons

Examp ples

B

Urbaanandsuburrbanareas,w woodedareaas,orother terraain with num merous closeely spaced obstructions havin ngthesizeoffsingle‐famiilydwellingsorlarger.

C

Open n terrain with scattereed obstructio ons having heigh hts generallyy less than 9.1 m. Thiis category includesflatopen ncountry,grrasslands,an ndallwater surfaacesinhurriccanepronerregions.

D

Flat,unobstructe edareasand watersurfacesoutside hurriicane prone e regions. TThis categorry includes smoo othmudflats,saltflats,aandunbroke enice.

Baseedontheprrojectlocatio on;theparkiingstructure eislocatedinabigopennlandwithsscattered obstructtionshaving heightsgenerallylessthhan(9.1m).Basedonthenatureof thisprojectlocation, theexpo osurecatego oryCisthem mostsuitablee.  Steep4:(velocittypressuree exposurecoeefficient, or ): The Velocitypreessurecoeffiicientdepenndsofthehe eightofthe structurefroomgroundlevel.For thesolarparkingstrructure;thettotallengthffromthebottomofcolumntothetoopofthesolararrays nbelow: isshown

Figure74,H Heightofthe parkingstruccturefromthe eground3.155m

The total heightt of the sola ar structure above groun nd level (Z) is equal to 33.15 m. The e velocity pressureeexposureccoefficientK maybedetterminedfro omthefollow wingformulaa: if Z 4.6 m m K

2.01

.

→ 13

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page8 87of202 The Z aand α are taabulated in ASCE A standaard documen nt (table 26..9‐1); part oof the table is shown below: Table e36,TerrainEExposureCon nstants(page256)[139]

Expossure B C D D From mtheabovetable Z

(m) 365.76 274.32 213.36

7 9.5 5 11 1 274.32 m,α 2 α K

9.5 4.6 274.32

2.01

.

0.85

A faaster metho od for calculating velocitty pressure exposure co oefficient is tto use the following f tablefro omthisstand dard(page310); Table37velocitypress v ureexposure ecoefficient(p page310)[1339]

Heightaabovegroun nd leevel(Z) 0‐‐4.6(m)

Exposure E C 0.85

B 0.57

D 1.03

From mtheabovetable,theve elocitypresssureexposurecoefficienttK equals 0.85. 

Steep5(Determ minevelocityypressure

):

FromBeernoulli’sequ uationofflow w,thewind pressure qe equals: q q

1 2

ρ 1.25

V → → 14 V

0.625V

Where,  q:Th hepressurecorrespondingtovelocitty(pa).checkkingunit: Kg m q S m Kg q m. S F forcce N masss Kg Accceleration m masss Kg

q

N. S m m m. S

S

N. NS m

N pa m

Kg heairdensittywhichiseq qualtoapprooximately1.25 ρ:Th

V:B Basicwindsp peedequals1 111 Km/hr ((foundinstep2).

m

.[139]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page8 88of202 Thevelo ocitypressurre,

evaluatedatheigghtzshallbe ecalculatedby: q

0.625 5

K

K

K

Where,  K :WindDirectionalityFacttor=0.85.  K :Topographicfactor=1..  K :velocitypreessureexposurecoefficieent=0.85 q

0.625

0.85

1

0.85

111 1000 3600

429.3 P Pa

mineforcecoefficient )): Steep6(determ TheanalysisinthissectionissbasedonSttructuralAnalysisBookb byHibbler(thhisbookexp plainsthe ument, and shows somee solved problems). The force coeffiicient C dep pends on ASCE staandard docu the cleaar area ratio which is the sign heighht (solar arraay height) “S S” to the eleevation “Z” (distance ( fromtheegroundto thetopofa array“sign”)..TheelevationheightZisequalto33.15m;the heightof thesignisshownon nthefigureb below:

Figure755,1)SandZfo ornormalopensign“fronttview”2)SandZforparkiingstructure “frontview”3)side viewofttheparkingsttructure;itshowstheheighhtofthetiltedsolararray

The picture abo ove shows the S and ZZ dimension ns for normal open siggn (part 1), S and Z dsideview).When,theaarrayistilted dwithan dimensionsforthettiltedsolararraystructurre(frontand 974 sin 11 949.1 mm m, and the cllear area angle off 11 degreess; the height of the arr ay equals 49 ratioiseequalto: 949.1 9 3150

0.301

From m the tablee below (cclear area aaspect ratio o table); th he force cooefficient C equals approxim mately1.8(eexactly1.767 7). Table38Clea arareaaspecctratio(StructturalAnalysissBookbyHibbbler)

Clearasp pectratioS/ZZ 1 0.9 0.5 0.2 0.16

Forcecoeffficient 1.35 1.45 1.7 7 1.8 8 1.85

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page8 89of202 

Steep7(Calculatewindforcce,F) The aimofusinggASCEstand dardistofinndtheresultantforceacttingonthessolararray.T Thewind olararray)projectedonaaplanenorm maltothe forceisccalculatedbasedontheareaofthesstructure(so winddirrection;the forceisassu umedactinggparallelto thewinddirrection.This sforceisdettermined fromtheefollowingeequation: F q G C A → 15 Where,  :TTheresultanttforceactinggonthesola rarray(N).  q :V Velocitypresssureevaluatedatheighhtz(pa).  G:G Gusteffectfaactor(thegu ust‐effectfacctorforarigidbuildingo orotherstrucctureisperm mittedto betakenas0.85 5).[139]  C :FForcecoefficcient1.8.  A :TTheareaoftthefaceofthesolarmoddule(0.826 1.638 1.353 1 ) F

429.3

0.85

1.8

1.353

888.69 N per modulee

Theforcce(pressure))acton1me eterofthearrraymodule: F

429.3 3

0.85

1 1.8

1

65 56.829 N per meter

The parking strructure will carry 9 sollar moduless; the total surface areea of the module m is 9 12.177 .Ba asedonthe resultantfo orcecalculatedpreviouslly;thetotal forceon (1.353 thestructureisequaalto 656.829 N 12.17 77 7889.2 21 N.Thismeans,thesoolarparkingsstructure oseto815.31Kgofwindloadduringgpeakcondittion. willexpo 3.10.2 F Factor of saffety: The factor of saafety (FOS) or o the factorr of ignorance can be esstimated thrrough speciffying five elementts which theey are, the properties oof the material, the app plied stressees, geometryy, failure analysisandthedessiredreliabilitty.[141]

nforthemaaterial : Esttimatingthecontribution TheranggeofFactor ofSafetyforrmaterialisffrom1to1.44

The propertieso ofthematerrial(thespeccificchosen materialforrthesolarpaarkingstructture)will a trusted pro oducer of st eel sections that has qu uality certificcates (like ISSO 9001) be obtained from a t propertiies are well known; how wever, evenn with a high h quality such as,, AL‐Zamil stteel. All of the sectionss; we cannott guaranty that the steeel sections have h constan nt thickness (some pointts of the steel secction may be b thicker orr thinner thaan the chose en thickness). The harshh weather in n Bahrain (high teemperature, dust and winds) w couldd effect on the propertties of the steel. Also the high humidityyrateduringgthewholeyearandals otherainsd duringthewintercouldl eadtocorro osionand rustwhiichleadsmaaterial’swear.Alsospeciialtestsforttheselected dmaterialwiillnotbeconducted; since,th hematerialsshouldbetesstedforsafeetyconstrain ns.Therefore easafetyfacctorof1.2isselected formateerialfactor.[[141] FSS 

1.2 1

Esttimatingthecontribution nfortheloaadstress : Therange eofFactoroofSafetyforlloadstressissfrom1to11.7

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 90of202 The loadsonthesolarparkkingstructur earedividedintodead loadsandw windloads;tthedead uchasthemassoftheso olarmoduless,crossbeam msandpurlinsarewellkknown;the direction loadssu andthe effectofloaadsonthesttructureare wellknownaswell.Me echanicslawsswillbeuse edtofind mechanicsbo ooks,andsom mefewassu umptionsma aybeusedb uttheywillnothave thestresssesusingm a noticeeable effect on the accu uracy of thee results. Th he wind load ds were calcculated base ed on an advanceed standard published by b American Society of Civil Enginee ers (ASCE); tthis standarrd covers severalaaspectssuch has,shapeo ofthestructture,location n,thestructureheight,ttheforcecoefficient, etc.Thus,ahighacccuracywinda analysiscan beachieved throughusingthisstanddard.Howevver,many usedwhileusingthisstaandardsuch astheparkingstructureewasassum medtobe assumpttionswereu anopen nsign;also,iitwasassum medthattheewindloads areactingo onthesurfacceofmodule etoward downwaard (like the gravity forcce); since thee winds havve different directions. d TThe accuracyy of wind analysisisdoubtful,andhence,a asafetyfactoor1.5issele ectedforload dstressfactoor.[141] FS 1.5  Esttimatingthecontribution nforgeomeetry : TheranggeofFactoroofSafetyforgeometryisfrom1to1..2 If B Bahrain Polyytechnic deccided to im plement the e solar parkking projectt; a steel fa abricator companyinBahrain nwillbeprobablyselect edtofabricaateandinstallthesteel parts;itise expected thattheemanufacturingtolerancceswill beaaverage;thereforeasafe etyfactoroff1.05issele ectedfor geometrryfactor.[14 41] FS 1.05 1 

Esttimatingthecontribution nforfailure analysis

:

Therangeo ofFactorofSSafetyforfailureanalysissisfrom1too1.5 Thefailureanalyysistobeuse edisderiveddforthestatteofstress,a asforuniaxi alormultiaxxialstatic stresses;thefailure duetoposssiblecumulattivedamage eorfatiguesstresses(dueetocontinuo ouswind loads)w willnotbecalculated.The ereforeasaffetyfactoroff1.2isselecttedforreliabbilityfactor.[141] FS 1.2 

Esttimatingthecontribution nforreliabillity : Therange eofFactoroffSafetyforrreliabilityisffrom1.1to11.6

The solarstructurewillbeinstalledinsiddeBahrainP Polytechnicccampus;anyydesignfailu urecould poseassubstantialhazardtothe estudents(ddeathorinjuries)because eofthehuggeweightofthesolar structure and possib ble huge win nd loads maake the struccture very risky. The reliiability mustt be very high(greeaterthan9 99%)toincreasethedurrabilityofth hestructure,andtoavoidddisasters. Asafety factoroff1.6isselecttedforreliab bilityfactor. [141] 1.6 FSS Therrefore, FS FS FS S FS FS FFS FOS S 1.2 1 1.6 1.05 1.2 1.5 3.6 Acco ordingto“ATextBooko ofMachineD Design”byD DR.Rajendra aKarwaafacctorofsafettyfrom3 to4sho ouldbeused dfor“Foruntriedmateriialsusedund deraverageconditionsoofenvironment,load andstreess”.TheseleectedFOS3.6 6iswithinthhisrange.[14 42]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 91of202 3.10.3 D Design selecction:

Part2:D DesignoptioonB

P Part1:DesiggnoptionA A

Figure76,Stru F ucturedesign noptions[142 2]

Asshownontheeabovepicturetherear etwooption nsforthestrructure.DessignoptionA Aconsists oftwoccolumnsanddesignoptionBconsisttsof1colum mn.DesignoptionBwassselectedin orderto providemorespaceforthecars(easierforccarstoparkaandleave),andtoavoidppossibleacciidents. 3.10.4 P Purlin force e analysis an nd finding th he size of th he purlin: (calculation ffor one park k): As sshown on figure 76 (part 2) the puurlins are ussed to carryy the solar m modules (mo ount the module inthedesireedlocation)andtokeeppaproperdistancebetweenthemodduleandcro ossbeams emostcomm montypesoffsteelsectionswhich inordertoputtheeelectricalparrtsandcableesinside.The usedtomanufactureepurlinsareCsectionsaandIsections(forsolarp parkingappliccations).[142]  Givvens:  Thewidthoftheparkis2.53meteer. numberofm modulesperpparkis9modules.  Thetotaln  Theselecttednumbero ofpurlinsforreachparkis7. Thepictturesbelowshowhowninesolarmooduleswillbe emountedo onthepurlin s(7purlins):: ArrayB

ArrayC

ArrayA

Figu ure77,ninem modulesmountedonseven npurlins

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 92of202 

Asssumptions: massofthem moduleisunifformlydistributed(Xaxis,Yaxisand Zaxis). 1. Them 2. Them modulemassactsvertical lytowarddo ownward. 3. Thew windactsperpendiculartoomassofth hemodule(verticallytow warddownwa ard),and thewiindloadisun niformlydisttributed. 4. Theth hicknessofth hesteelsecttionisconstaant(constanttstrength).  Tottalloadactin ngoneachp purlin: Assshownonthee77picture;;eachthreemodulesformanarray..Eacharray ismountedbythree purlins;theforcesonthepurlinare: 16Kgor1566.96N).  Maassofthesolarmodule(1  Theewindloadaactingonthe esurfaceoftthemodule(888.69N“p permodule”)).  Theetotalloado onthepurlin nduetomas sofonearraayandwindloadactsononeareis: T Total load pe er module module weeight Wind load → 166 Tottal load per module To otal load perr array

888.69 N N Wind loadd

156.96 N 1 arrray weight To otal load perr module

Total lo oad per arraay

1045.6 65 N

number of m modules perr array → 17 1

1045.6 65

3

313 36.95 N

Thepicturebelowsh howssidevie ewofthesysstem;thedisstancebetweenthepurl insisconstant:

Figure7 78,ninemodu ulesmounteddonsevenpurlins(sidevie ew)thedimennsionsinmm

wopurlinscaarryhalfanarray.Thelo oadsare: Fromtheabovepictture;eachtw Table39,arrrayloadsacttingonthepu urlin Loadfro omarray(acttstowarddo ownward) Actson(orca A arriedby) HalfloadofarrayA Purlin1a and2 HalfloadofarrayA Purlin2a and3 HalfloadofarrayB Purlin3a and4 3136.95 2=1568.4 75N HalfloadofarrayB Purlin4a and5 HalfloadofarrayC Purlin5a and6 HalfloadofarrayC Purlin6a and7

Loadso oneachpurlin

1568.475 2=784.23 375N

Table40ttotalloadacttonthepurlin ns

Purlin Purlin1 Purlin2 Purlin3 Purlin4 Purlin5 Purlin6 Purlin7

Tottalloadoneachpurlin 784.2375N 78 84.2375+78 84.2375= 1568.475N 784.2375N

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 93of202 Asw wecansee,ttheloadonpurlins2,3, 4and5is1 1568.475N,a andtheloaddonpurlin1 1and7is 784.23775 N. The pu urlin will be designed bbased on the e maximum load; but leet us first check the previousscalculations: Checking: Thetotaalloadfromthethreearrrays: To otal load 3 arrrays

Tottal load per aarray

Total lload 3 arrayys Totalloaadactonallpurlins:

3136.95 5

num mber of arraays

3

941 10.85 N

Total load o on all purlinss 784.237 75 1568.475 5  Fin ndingreactio onforceandbendingmoomentonthe epurlin: urlin: Frontvieewofthepu

784.2375

9410.85 N N

Figure79,Frontvviewofthepu urlin(distributtedforce)

The figureabovveshowshow wthepurlinnwillinstalle edonthecro ossbeam(RR1andR2re epresents 2respectivelyy).Thearrayyloadisuniformlydistriibutedonth hepurlin, crossbeeam1andcrossbeam2 andhen ncetheresulttantforcewillactinthe middleofth hepurlinasshownbelow w:

Figure80,Frontviewoffthepurlin(rresultantforce)–FBDofth heforcesactinngonthepurlin

Findingthereaction nforces(R1a andR2)“figuure82”: ∑M 1..265 m

0, ACW

15 568.475 N R2 2

CW R2

2.53 m

784.2375 N

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 94of202 ∴ R1

1568.475

78 84.2375

784.2375 N 7 ∑FY

Findingthemaximu umbendingm moment: For the bending diaagram: maxim mum bendinng moment: shear force times distannce 1.265 992.06 N. m m

784.2 2375 N

Shearfo orcesandbe endingmome entdiagram s:

Freebodydiagram

Shearforce ediagram

N.m

Be endingmomeentdiagram

Figure81,freebodydia agram,shear forceandben ndingmomen ntdiagram(foorpurlins)[19 96]

Selectingsizeo ofCchannelbeamfrom AL‐Zamilste eelcatalogue e: Findingtheallowab bledesignstrress The yield strenggth of Al‐Za amil steel seection is 345 5 MPa; the allowable ddesign stresss can be determinedusingth hefollowingfformula:

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 95of202 σ

σ

345MPa 3.6

FOS

95.83 MPa

Theben ndingformula: σ Y

m I

E r

Where,  M:thebendinggmoment(N N. m).  I:M Momentofin nertiaofthesectionabo utthebendiingaxis m .  σ:b bendingstreess(Pa).  E=Young’sMo odulusofthe ematerial(G Pa).  R==radiusofcu urvatureofth hebentbeam m(m). A

Thissequationcaanbewritten nas: m I σ

σ Y

m

Y I

m orr Z

Where, 

nmodulusZ Z Z:iisthesection

m ,andfinally:: M σ

Z

Figuree82,Cchanne eldimensionss[90]

Both hthestress valuesandb bendingmom mentvalues areknowna andthereforrewecanca alculateZ value;th heZvaluecaanbeusedto ofindtheap propriatebe eamsize(Cchannel). Z Z

992.06 N. m 95.83 10 0 N 0 0.00002619 91

0.00001035 m m 100 cm m

10.35 5 cm

Thetabllebelowsho owsthedime ensionsof3CCchannelbe eamsfromAl‐Zamilcatal ogue: Taable41,thediimensionsof 3Cchannelb beamsfromA Al‐Zamilcataloogue[90] Cch hanneldimensions(seeppicture82) mentof Neutralaxis Mom Thickness inerrtiaI cm d cm A cm L cm t cm

Section modulusZ m

No

Mod del

1

120C C20

12

6

1.743

0.2

6

120..2

2

200C C20

20

8.5

2

0.2

10

491 .7cm

49.17cm 4

3

300C C20

30

8.5

2.565

0.2

15

13088.5cm

87.23 8

20.03 2

From m the abovee table the best size foor the purlin n is model number n 1 w where the se elected C channel beam shou uld halve a section s mod ulus equal to t or greater than 10.355 cm . The C beams mmeansusin ngmoremate erialandinc reasingtheccost. number2and3aresuitable,buttusingthem

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 96of202 Todoub blecheckthaattheselecte edmoment ofinertiaab boutX‐Xisco orrect;Soliddworkssoftw warewas usedasshownbelow:

Figure83 3,momentof inertiaabouttaxisofbendiingusingSoliddworks.

Dia agramA

From m Solidworkks software, the momennt of inertiaa about (Iy ”based on pplane of ske etching”) equals 1125.66 cm ; since the va alue on the catalogue iss 120.2 cm ; one reasonn for variatio on that I approxim matedthesizeofthefille ets(notmenntionedinthecatalogue)). Calculating second moment of o inertia ((without filllets); the second s orarectangu ularshapeis : momenttofinertiafo I

bd see diagrram A 12

Thro ough splitting the C beam into threee rectangulaar; the moment of inertiao ofthesystem mwillequalto: I

I

bd bd d inside reectangular outtside rectangular 12 12 bd gap rectangu g ular 12

6

12 12

5.6

11 1.6 12

0.2

8.51 12

125.31 cm 1 Figure84,C Cchanneldim mensions

The solid workss values seem m to be moore accurate compared to t cataloguee values because the Solidworksvalueis verycloseto othecalculaatedvalues. Ifoundthattsomeofthhemomento ofinertia values(I)thatmenttionedinthiscataloguessareincorre ect;soIwill comparebeetweenIvalu uesfrom catalogu uewithSolid dworksvaluesinallsectioonstodoublecheckthevvalues. PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 97of202 3.10.5 P Purlin force e analysis (corrected caalculation): Inth heprecedinggcalculations;thepurlinwasdesigne edbasedontheresultanntforcewhe ereitwas assumed d that this force acts on n the surfacee of the purrlin perpendicularly. Thiss assumption n is valid when th he purlins arre fixed horizontally (noo inclination); the actual design inc ludes inclina ation (11 degreesfromtheho orizontalforrleftsidepaarksand5degreesforrightsideparrks).Thus,th hestress becalculated dagainbasedontheacttualdesign;tthepurposeofthepreviiouscalculattionswas shouldb selectinggthesizeofpurlingfrom mthecataloggue.

Forrcesactingo onthepurlin: Figure85,,forcesactinggonthepurlin.

The figure abovve shows ho ow the purli n will be insstalled on th he crossbea m (11 degre ees from horizonttal)forleftsideparks.Th heresultant force(darko orangearrow ws)isthetottalofthema assofthe modulessandwindlo oad;itactsvverticallytow warddownwaard;thisforcceissplitintootwocompo onents:  Verrticalforce(F1)whichisequalto15568.475×COSS11=1539.6 66N;thisforrcewillleadtobend theepurlinabou utXaxis,andhencetheetopofthe beamwillbeincompreessionandbo ottomof theebeamwillb beintensionasshownbeelow: Figure86, purlinbendin ngaboutxaxis.

Theebendingstrressduetovverticalforceeequals: σ

m Z

1539.66 N

2.53m 2 S. F 0.03 10 m 20

2

48.6 MPa

Wheere, M the maximum bending b mom ment (in the e center of the beam),, Z is the e section modulussaboutXaxiis(obtainedfromthecattalogue).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 98of202 

Horizontalforce(F2)whichisequalto11568.475×SIN11=299.279N;thisfoorcewilllead dtobend ut Y axis, an nd hence thee right side of o the beam m will be in ccompression and left thee purlin abou sideofthebeamwillbeinttensionasshhownbelow: Figure87, purlinbendin ngaboutYax xis.

horizontalfoorceequals: Theebendingstrressduetoh σ

m Z

299.279 N N 2 2.53m 8.6 65 10 m m

2

21.88 MPaa

Wh here, M the maximum bending mooment (in th he center off the beam),, Z is the e section mo odulusabouttYaxis(obtainedfromthhecatalogue). Tottalstress(σ)):VonMises equation: Figure88,sttressactingo nabeaminthemiddlepo oint(sectionA A‐A).

The picture abo ove shows the bending stresses actting on a sm mall part of the purlin; the t total Vonmissessttress)canbe ecalculatedffromthefolllowingformu ula: stress(V Tottal stress σ : Von Misess equation

Tottal stress σ

1 2

48.6

1 2

21.8 88

σ

21.8 88

σ

σ

σ

48.6

σ

σ

42.2 M MPa

Themaximumsttressthatthebeamwill exposeto(ffortilt11deg grees)is46.11MPa;thea allowable yieldstrrengthis95.83MPasotthedesignisssafe.Throu ughrepeatingthesameccalculations fortilt5 degreesitwasfound dthatthetotalstressthaatthepurlinwillexposetoequalsis445.2MPa.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page9 99of202 3.10.6 C Crossbeam fforce analyssis and findiing the size of the purliin: (calculattion for one e park)  Tottalloadactin ngoneachccrossbeam: Assump ption:

Asssumingthattthemassofthepurlinis uniformlydistributed. Each hparkcontaainstwocrosssbeams;th eloadonth hecrossbeamsistotalooftheloads thatare actingonthepurlinloadplusthe emassoftheepurlin(10.373Kg): neachcrossb beam: Totalloaadactingon

Figure89,Totaalloadactingoneachcrosssbeam.

purlin weight loadd act on purlin number of cross beaams per park

lo oad from onee purlin actiing on one ccross beam

10.373

load frrom one purrlin acting o on one cross beam

9.81 2

1568.4475

835..117 N

Each hcrossbeam mwillbecom mmonfortwooparksorth hecrossbeam mcarrytwo purlinsonefromthe leftsideparkandth heotherfrom mtherightsiidepark(see efinaldesign nfigure);theeloadoncro ossbeam isequalto: load from two pu urlins acting o on one cross b beam

835.117

2 leftt and right puurlins

167 70.2 N

 Fin ndingresultaantforceactiingonthecrrossbeamwithdistance&bendingm moment: dydiagram:(Note:thep purlinloado ffirstandlastpurlinequ ualshalfofthheloadactin ngonthe Freebod remainin ngpurlinsP &

.

.

.

2

886 N (e explainedin “purlinsectio on”).

Figure90,foorcesacingon ncrossbeam

ultantforceaactingonthe ebeam: Theresu ∑F R 886 1670.2 1 1670.2 1670.2 1670 0.2 10123 N 1 accts toward d downward

1670.22

886

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page10 00of202 FindingtthemomenttatpointA: ∑M 0.03 m m 886 N 0.849 m 1670.2 N 1.668 m m 1670.2 N 3.306 m 1670.2 N 4.1225 m 2.487 m 1670.2 N 4.944m 886 N 1 N. m 25175.901

1670 0.2 N

The moment at point equals th he resultant force timess the distancce; the distaance of the resultant ompointAeequals(N): forcefro point A 25175.901 N 2 N. m momentat p Disstance N 2.4877m resultant force 10123 N Theresu ultantforceaactsexactlyiinthemiddleeofthebeam m;thenewffreebodydiaagram:  Fin ndingsection nmodulus(ZZ)toselectthhesizeofIb beam: Findingthemaximu umbendingm moment: For the bending diaagram: maxim mum bendinng moment: shear force times distaance 2.487 25175.90 01 N. m Shearfo orcesandbe endingmome entdiagram s:

10123 N

Freebodyydiagram

Shearforce ediagram

N N.m

Ben ndingmomen ntdiagram

Figgure91,freebodydiagram,shearrforceandbendingmomentdiag gramforcrossbeeam[196]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page10 01of202 Findingtheallowab bledesignstrress: The “I”steelsecctionwasselectedforth ecrossbeam mduetoitha ashighresisttancetothebending andtherreforerequirreslessmate erial;theyie ldstrengtho ofAl‐Zamil“I”steelsectioonis345MP Pa: σ

σ

345MPa 3.6

FOS

95.83 MPa

FindingZvalue: M σ

Z Z Z

25175.901 2 N. m 95.83 9

0.00026271 14

10

0.000639614 4

100

262.71 14

SelectingIbeam: Thetablebelow wshowsthed dimensionsoof3“I”sectio onbeamsfro omAl‐Zamilccatalogue: Table42,diimensionsof3 “I”sectionbea amsfromAl‐Za amilcatalogue[[90]

IIsectiondim mensions(see epicturebeloow) No

Model

1

Flangew width(cm)

Flangethick(cm)

Depth(cm)

WebT Thick(cm)

IPEA A200x18.4

10

0.7

19.7

0.45

2

UB3305x102x28

10 0.19

0.89

30.89

0.6

3

UB4406x140x46

14 4.24

1.12

40.23

0.69

r

No

Radiusoffillet(rr) cm

Momentof inerttiaI

SSectionmodulus Z

1

1596 6cm

162.03cm m

0.00235

18 8.4

2

0.76

5421 1

350.99

0.00363

28 2

3

1.02

15603cm

0.00589

39 3

775.6cm

Area

Mass(Kg)permeter

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page10 02of202 The minimum required secttion moduluus (Z) is 262.714 cm ; fro om table 422 the optimu um beam 305x102x2 28(sectionm modulusis35 50.99cm ). optionissmodelUB3 3.10.7 C Crossbeam fforce analyssis (correcteed calculation): Inth heprecedinggcalculations;thecross wasdesigne edbasedontheresultanntforcewhe ereitwas assumed d that this force f acts on n the surfac e of the cro ossbeam perrpendicularlyy. This assum mption is validwh henthecrosssbeamisfixe edhorizontaally(noinclin nation);thea actualdesignnincludesin nclination (11 degrees from th he horizonta al for left sidde parks and 5 degreess for right siide parks). Thus, T the c again based on the acttual design;; the purpoose of the previous stress sshould be calculated calculatiionswasseleectingthesizzeofcrossbeeamfromthecatalogue.

Forrcesactingo onthecrossb beam: Figure 92,forceson ncrossbeam

mn(11degreesfrom wthecrossbeeamwillbecconnectedw withthecolum Thefigureaboveeshowshow heresultant force(redarrow)repressentsthetottalofthema assofthe horizonttal)forleftsideparks.Th moduless, wind load d, mas of the t purlins aand mass of o the crossbeam; it accts verticallyy toward downwaard;thisforcceissplitinto otwocompoonents:  Verrticalforce(F1)whichisequalto101123 cos 11 1=9937.01N N;thisforce willleadtobendthe purrlinaboutXaaxis;theben ndingstressoonthecross beamcanbedetermineedfromtheffollowing formulas: Maximum m bending m moment σ 

2.44131

24259.32 N. m .

distance

.

.

69.17 MPaa

1.56 N; this force will make m the Horizontal forcce (F2) which is equal too 10123 siin 11 = 1931 edfromthefollowingfor mula: beaamintension.Thetensilestresscan becalculate σ

9 9937.01 N

shear force

. .

Theemaximumstressthattthebeamwiillexposeto: σ σ σ σ 69.17 0.532

0.5322 MPa

69.702 MPa 6

The maximum stress that the t beam w will expose to t (for tilt 11 1 degrees) is 69.702 MPa; M the ngthis95.83 3MPasotheedesignissaafe.Throughrepeatingt hesamecalculations allowableyieldstren fortilt5degreesitw wasfoundthatthetotalsstressthatth hepurlinwillexposetoeequals70.383MPa.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page10 03of202 3.10.8 S Size of the end plate sellection: Both h Flush end plate and fiin plate con nections are e suitable an nd can be siimply fabrica ated and welded with the sttructure. Th he Flush en d plate con nnection was selected because it provides resistancetomoment.

Figure9 93,Crossbeam m(Isection)w weldedwitha asteelplate.

The pictureabovveshowsaccrossbeam(IIsection)we eldedwithasteelplate((Flushendpllate);the steelplaatehasfour holeswhere efourbolts willbeused dtoconnect thecrossbeeamwiththe evertical column.Thesteelplatewillbe selectedbassedonthetypeofapplicationandaaccordingto Al‐Zamil steelcattalogue;thetablebelow showsthesstandardsize esofthestee elplate: Table43,,standardsize esofsteelpla ates

Thicknessm mm 4 5 6 8 10 12 15 20 25 30 40 50

Size

Usage

1.5m(W)×6m(L)

Webso ofbuilt‐upsections.

1.5m(W)×6m(L)

W Websandflangesofbuiltupsections .

2.1 1m(W)×6m(L)

W Websandflangesofbuilttupsections,, con nnectionplates.

2.1 1m(W)×6m(L)

Flangesofbuiltupse ections. Con nnectionplattes.

2m(W)×6m m(L)

Con nnectionplattes.

Specifications

ASTM M‐A572M Yieldsstrength345 5 MPa Ultim matetensile strenggth450MPa

Asshownaboveetheselected dsteelplateestandardfo orconnecting gthecrossbeeamwiththe ecolumn hasathicknessof20 0mm.Thele engthofthe plateis6mandthewid dthis2.1meeter;theplattewillbe cuttom matchthedim mensionsoftthe“I”sectioon(depthan ndflangewid dth).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page10 04of202 3.10.9 N Number and d size of boltts calculatio on: Befo orecalculatin ngtheforcesactingontthebolts;th hesizeofthe eboltwillbeeselectedfirst.Then theselectedboltwilllbeanalyzedandcheckeedifthedessignissafeorrnot: Table44,standarrdsizesofboltsforZamilssteel[144] Boltdiamete B r(mm) Boltlength(m B mm) SSpecification ns Usage Yieldstrength 50 M16 70 60 Bolltmodel:ASTTM‐ M20 634MPa 6 80 Co A325M onnectionsoff 70 Ty Type1:generral prim marysectionns M24 90 puurposeMedium andothermomeent CarbonStee connections. el 90 M27 Ful lythreadedbolt 110 558.5MPa 110 M30 120

Fromthetableabove;th heselectedssizefortheb boltisM20w whichithas yieldstrengtthof634 MPa.Iftthesizeofth heboltissm mallcompareedtotheapp pliedload;th hesizeornu mberofbolttswillbe changed d.[145][100]  

Asssumptions:  Thereisno ofrictionforrcebetweentheplatesthatareclampedbythebbolts. Forrceanalysis:

Figurre94,theecceentricloadap ppliedonbolttsbyplate

The figuresabovveshow4boltsinsideaplate;thep plateisweldedtoabeam m.Theplate eexposes to an eeccentric load (moment “Point C” aand axial fo orce at point “A”) due to the masss of the crossbeaam and the applied loa ad (10123 + [28 Kg×4.974m×9.81] = = 11489.23) . Each force e creates differentstresseswh hichtheyare e: 1.

Sheaarforce:thissforceispro oduceddue totheaxial force(PA)actingontheeplate(pointtA).Due to,ttheboltsareequalinsize e;theshearfforceisunifo ormlydistrib butedonthebolts.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

05of202 Page10 Taable45,desiggngivens

ForcePA

FOS

11489.23N

3.6

Givens Boltdiaameter

Numberofbolts

0.022m

4

BBoltCrossse ectionarea(A A) πrr π 0.0 01 = m

Thesheaarstresscan nbecalculate edusingthe followingfo ormula: Force PA FOS τ Cro oss section a area of the b bolt Paralleel area to she ear force τ

Figurre95,shearfo orceonbolt[146]

11489 9.23 3.6 π 4 00 1000

Number off bolts

32.91 MPa per bolt

Picture995showsho owtheshearforceactinngonthebo olt;thisshea arforcecreaatesashear stressof 32.91M MPAperbolt. 2. Tenssile force: th his force is produced p duue to moment at point C. C To explainn this force, imagine thatttheplateisrotatingclocckwise(becaauseofmom ment);areacttionforcewiillbeproducedinthe boltsoppositetothedirectiionoftherootationofth heplate.Thissmakesthe boltsintension;the whichthe maggnitudeofteensileforceisbasedontthedistance betweenthemomentaandboltinw tenssileforceincreasesasthe edistanceinncreases.The emomentattpointCequuals: M F L F L F L F L → → 18 Astheforceand ddistancearedirectlyprooportionalto oeachotherr;wecansayythat: F L

F L

F L

F L

F L

F 4

F L

F

→ → 19

F

→ → 20

→ → 21

→ → 22

metrical, Bysymm F

F

Where, dtobedesiggned).  N::isthedesireedbolt(need Throu ughrearrang ing(19,20,2 21&22)ineq quation18

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page10 06of202 L F L

M

L

L F L

L

L F L

L

L F L

L

Through hmultiplytheeequationb by : L F

M M

L

L

L

L

L

L L

L L

F

F

→ 23

The moment att point C will be distribuuted on the bolts uneve enly based oon the distan nce from pointC (picture94)..Thetensileforceonboolt1and2issequalbecau usetheyhavvethesamedistance frompointC;alsobo olt3and4exposetotheesametensilleforce: Figure e96,location oftheboltsffrompointC((picture94) Taable46,distan nceofthecennteroftheboltstoPointC(bottomofthheplate)

Bolt

Disstancefrom pointC

Bolt1and2 B B Bolt3and4

77.225+154.4 45 =231.675m mm=0.23167 75 m 77.225 mm=0.007225m

Findingforceonbollt1and2: F

M L

L

L

L

L

2.487 11489.23 0.231675 225 0.077 7225 0.231675 0.2331675 0.0772

55 5.5 KN

Findingforceonbollt3and4: F

M L

L

L

Checkingtheratio: F L

L

L

F L

2.487 2

0.07 77225

5 5.5 0.23 31675

11489.23 2

0.07 77225

18.5 0.0 077225

0.077225

0.231 1675 2

0.2311675 2

18.5 KN

239.55972811

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page10 07of202 The boltwillbe designedba asedonthehhighertensilleforce(boltt1&2).The tensilestressscanbe ormula: calculateedusingthefollowingfo Forrce maximu um FOS T Tensile stres ss on each b bolt Crosss section are ea of the bollt Taable47,desiggngivens

Force

FOS

Givens Boltdiame eter

55.5KN

3.6

0.02m m

BoltCCrosssectionarea(A) πr π 0.01 = = m

55.5

10 1 3.6 635.983 M MPA π 10000 The stress is veery high whe ere the bolt will fail. Ussing a biggerr bolt is nott a practical solution umsolution istwoaddtw womore becauseetheavailablespaceintheplateisnnotsufficientt;theoptimu bolts in the middle (between 1 and 3 and between 2 and a 4); the distance is 1154.45 mm from f the pointC.Theforcesaactingoneacchboltwhenn6boltsareused: Ten nsile stress o on each boltt

Thesheaarstressand dtensilestressactingon eachboltwhen6boltsu used: 11489.23 3 3.6 τ 21 1.943 MPa p per bolt π 0.01 6 F

F

5 0.077225

M L

L

L

L

L

L

L

2.487 11 1489.23 0.231675 0 0.2316 675 0.231675 0.1 15445

0.07722 25

Tensile stress on each bolt σ 1 

39.64 4 10 3..6 π 0.01

0.115445

39.64 KN

454.244 MPA

Maaximumprin nciplestresscalculation: The maximump principalstre essesinthe boltresultin ngfromcombinedloadinng(maximum mtensile loadactingonthebo olt)canbecalculatedus ingtheform mula: σ 1 4τ 4 σ σ 2 2 σ

454.24 2

1 4 454.24 2

4

21.943

4455.3 MPA

Asw wecanseetthemaximum mtensilestrressactingoneachboltislessthan theyieldstrrengthof thebolt;thususing6boltswithadiameter of24mmissafeforcon nnectingthe crossbeamwiththe column.  Mo ohrcycle: Themaxximumtensiilestresscan nbedetermiinedalsothrroughdrawingMohrcyccle:

Figu ure97,tensioonandsheara actingonthebolt

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page10 08of202

Figure98,tenssionandshea aractingonpa art“Y”

The figureaboveeshowsthetensionanddshearforce eactingonp partY;theblluearrowre epresents T red arro ow (τ ) reepresents the shear stre ess acting onn point A; th his shear the tenssile stress. The force will create a moment or make part Y rotate clo ockwise. A re eaction sheaar force is produced p (τ ′) againsttheffirstshearfo orceτ eqqualinmagn nitude;thissshearforcem makespointYrotate anti‐clocckwise. In M Mohr cycle, the t shear fo orces take thhe Y axis and d the axial forces take XX axis. The clockwise c shear sttress is considered posittive, and anttilock wise shear s stress is negative. The tensile stress is positiveandcompreessionstressisnegative. Thus,therequiredpointtstodrawM Mohrcycleare: Figgure99,PointtsrequiredforrdrawingMo ohrcycle

Po oint1 Po oint2

454.24, 21.943 2 0, 21.943

Figgure100,tennsionandshea aractingonp part“Y”

ohrcycle; FromtheaboveMo hemaximum mtensilestressonthebo ltis455.3M MPA(thecalculatedvalueeis455.3MP Pa).  Th  Th hemaximum mshearstresssthatthebooltwillexpossetois228.1 18MPa.  Themaximum mcompressio onstressthaattheboltwillexposetois1.06MPa . mumprincip plestressesaactingonbo olt Findingthetotalstrress(vonmisssesstress)dduetomaxim Fiigure101,PoiintsrequiredtodrawMoh hrcycle

455.3 MPA(tension)

1 .06 MPAcom mpression

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page10 09of202 Tottal stress σ : Von Misess equation

1 2

σ

σ

1.06

σ

σ

σ

σ

Total stress σ

1 2

455.3 4

1.06 6

455.3

455.8 83 MPa

The totalvonmissesstresso ontheboltiis455.83MP Pa;theyield strengthof theboltis6 634MPa, nce,thedesiggnissafe. andhen  Selectingthenut: w shows the e selected nnuts for flussh end plate e and base plate from Al‐Zamil The table below ue. catalogu Table4 48,standardssizesofnutsffromZamilste eelcatalogue

Bo oltdiameterr(mm)

Usage

M20

Fooranchorbolts.

M20

Highst rengthNutfformain connectionss.

Sppecifications DIN9344Class5;Ele ectro Galvanizzedhexagona alnut. ASTM‐A5663M;hexago onalnut.

Selectingthew washer: w shows the e selected w washer for flu ush end platte and base plate from Al‐Zamil The table below ue. catalogu Table4 49,standardssizesofnutsffromZamilste eelcatalogue

Bo oltdiameterr(mm) M20 M20 

Usage Fooranchorbo olts Forhighsstrengthbolttsofmain connectionss.

Sppecifications DIN125TTypeA;Galva anized. ASTM M‐F436Type e1.

Sum mmary: Table e50,SummaryoftheselecctedNut,bolttandwasherffromAL‐Zamiilcatalogue

Nu umberofboltts Sizzeofthebolt Boltmodelnumb ber Maximum mVonmisseesstress actin ngonthebo olts Yieldsttrengthofthebolt Connectio onnutsize&material Anchornutsize&m material Connectionwashersize& material Anchorwaashersize&material

6 20mmdiam meter ASTM‐A325 5M Type1:ggeneralpurp poseMedium m CarbonSte eel 455 5.83 MPa with w FOS 634Mpaa M24‐ASTTM‐A563M;hexagonalnut. M20‐D DIN934Classs5;Electro Galvaanizedhexaggonalnut. M20 ‐ASTM‐F43 36Type1.

Figure 102,Boltsinssideendplate e

M20‐DIN N125TypeA A;Galvanized d.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 10of202 3.10.10 Forces on ccolumn (forr double‐sid ded parks w with different slope): Figgure103,forccesoncolumnn(double‐sidedparkwithdifferentsloppe)

The horizontald distancesbettweenthereesultantforces(M1&M2 2)andthecoolumnareca alculated wnbelow: asshow Figu ure104,calcu latingthedistanceM1and dM2

1equals: ThedistanceM1 M1 co os 5 lengtth of the croossbeam 2equals: ThedistanceM2 M2 coss 11 lengtth of the croossbeam

2

2.487

cos 5

2

2.487

cos 11

2. 47754 m

22.44131 m

Anaalyzingthefforces: Pictu ure103show wstheloadsthatareacttingontheccolumn;resultantforce11representsthetotal loadacttingontherrightsidecro ossbeam+t hemassoftthecrossbea am.Resultanntforce2re epresents thetotaalloadactinggontheleftsidecrossbeeam+them massofthecrossbeam.Innthisanalysis,itwas assumed dthatthewindloadactsswiththedi rectionofth hemassofth hebeam(tow warddownw ward).To analyze theloadson nthecolumn nweneedt omovethe resultantforce1and2 tothemidd dleofthe Beforeanalyzzingtheforcces;letusexxplainasimp pletheoryre egardingmoovingtheforcesfrom beam.B pointtopoint: Movingaforceonittslineofacttion:

Figure e105,movinggaforceonitsslineofaction[106]

ointAtopointB.Bothtthepointsarreonthe The pictureaboveshowsmovingaforcee(F)frompo on,andhencetheexternnaleffectwillnotchange(applyingthheforceatpointAor vector’slineofactio hesamemaggnitudewillnotchangettheeffect).[106] Bwithth

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 11of202 Movvingaforceoffofitsline eofaction:

Figure1 106,movingaaforceoffofiitslineofaction[106]

Wheentheforce “F”ismove ed,butnotaalongitislineofaction;thereisachhangeinthe external effect. A As shown ab bove, movin ng the force “F” from point p A to B requires crreating an additional couple m moment M force F distance d . So to mo ove a force off o of its linee of action; a couple shouldb beadded.[1006]Theresultantforce11and2areactingindiffe erentlineof actions;and dhencea couple ((moment) sh hould be ad dded; the tw wo resultant forces can be shifted tto point A as a shown below: Figure107,forrceonthecolumnatpointA

Fromthefigureabovve;theforce esactingatppointAare:((Note:Clockw wiseisnegattive)  Ressultantforcee1:equalsth hetotaloft heloadsthaatactonlefttsidecrossbbeam(purlinssmass& win ndload)plussthemassoffcrossbeam;;itisequalto(10123+(2 28×4.974×9..81)=11489 9.23N).  Ressultantforcee2:equalsth hetotalofthheloadsthattactonrighttsidecrossbbeam(purlinsmass& win ndload)plussthemasso ofcrossbeam m;itisequaltto(10123+((28×4.974×99.81)=11489 9.23N).  Mo oment 1: pro oduced beca ause of movving resultan nt force 1 to o point A; itt is equal to o (M1 11 1489.23 N 2.44131m 28048.77 7 N. m (ACW W).  Mo oment 2: pro oduced beca ause of movving resultan nt force 2 to o point A; itt is equal to o (M2 1 11489.23 N 2.47754m m 2846 65.03 N. m (C CW). Themom mentsatpointAactsoppositetoeacchother,and dhencethenetmomenttatpointAe equals: M

28 8048.77

28465.03

416.26 6 N. m CW

Thebendingmomen ntatpointAisnegativew whereitmeaansitisclockkwise: Figure1008,totalbend dingatpointA A

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 12of202 From mpicture107(freebodyydiagram)tw womoreforccesareacting gonthebeaamatpointA A(R1and R2); theese forces acct at point A A vertically t oward down nward leadin ng to comprress the colu umn (see figure1111).Thetotaalofverticalresultantforrces(R1andR2)isequal to: Thetottalofverticalloads(axialload)actinggatpointAis: Resultan nt force R2 R R1 Resultant fforce 11489.2 3 11489.23 22978 8.46 N towaard downwa ard Fiigure109,theetotalofverticalloadsatp pointA

Directio onoftheforccesatpointA A: Figure110,,directionofttheforcesacttingontheco olumnatpoinntA

In th he precedingg sections; the t section m modulus waas used to find the size of the beam m. In this section thereisoneemoreunknownparameeterwhichissthecrossssectionarea ofthebeam m.Inthis sectiontthesizeofth he“I”beamwillbeselecctedfirst;the enIwillchecckifitcanw withstandthe eloadsor not.Theeselected“I””beamisUB B305x102x x28whichisthesamebe eamselecteddforcrossbe eam.  Fin ndingtheaxialstressactingonthecoolumn(duetoverticalfo orce): Theaxiaalstresscanbecalculate edfromthefformulabelo ow: σ

F A

Where,  

Axialforcean ndthenegattivesignrefeertocompre ession(22978 8.46N). F:A A:ccrosssection nareaoftheIBeam(equuals0.00363 “fromAl‐Zamilsteellcatalogue”)).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 13of202 σ

F A

22978.46 6 0.00363 m m

6.33 MPa

Distribu utionoftheaaxialforce(ttheaxialforcceisuniform mlydistribute ed): Figure111, axialforceacctingontheco olumn

ndingtheben ndingstressactingonthhecolumn(d duetohorizo ontalforce): Fin

Thebendingstressccanbedeterminedfrom thefollowingformula: σ

m Z

Where,  

M:thebendinggmomentatpointA(4166.26N.m). Al‐Zamilsteellcatalogue”). Z:SSectionmodulusofthe“I”Beam(equuals350.99ccm “fromA m 416.26 N. m σ 1 1.186 MPa Z 35 50.99 10 m

Distribu utionoftheb bendingstre ess: Figu ure112,benddingofacantiileverbeam[147]

Wheenacantilevverbeamis exposedtoaaload(ora moment);thebeamwi llbend.The bending forcemakesthetop pofthebeamintensionnandbottom mofthebea amincomp ression(partA),and viceverssaiftheloadisapplied intheoppoositedirection.Thebeam missplittottworegions;thefirst before tthe neutral axis (Y) (te ension) and the second d after the neutral axiss (compressiion); the distributtionofthebendingforce eisshownbeelow:

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 14of202 Figure113,be F endingforcea actingonthecolumn

The pictureabovveshowsthedistributioonoftheforcceinthebea am;Yrepressentstheneu utralaxis (axis of bending). The T right side area is in compressio on, and the left side areea is in tenssion; the maximumtensionw willbeatpoin nt1andmaxximumcomp pressionwillbeatpoint22. 

Com mbinedforce(totalstress):

Fiigure114,the ecolumncom mbinedstress (themaximumbendingforceisexaggerratedforclarification)

Themaxximumstresssactingontthecolumn((point1): Strress at pointt 1

6.33 3 MPa

1.18 86 MPa

5.144 MPa C

Themaxximumstresssactingontthecolumn((point2): Strress at pointt 2

6.33 3 MPa

1.18 86 MPa

7.516 MPa C

Asw wecansee;tthemaximum mstresstha tthecolumn nwillexpose etois7.516 6MPa(comp pression); sincetheeallowableyyieldstrengtthoftheseleected“I”secctionis95.83 3MPa.Itism muchbettertoselect asmalleerIsectionto osavematerrialandreduucethecost;;butitismucheasiercoonnectingthe ecolumn with thee crossbeam ms if both be eams have thhe same size e. So this “I”” section (U B 308 x 102 2 x 28) is selected dforthecolu umnsfordou ublesidedpaarks.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 15of202 

Collumnbucklin ng: Figu ure115,Buckklingofacolumnunderanaxialforce

ove,ifanaxiaalloadisincreasedtoaccriticalvaluee;theinitiallyystraight Asshownontheepictureabo shapeofacolumnb becomesunstable,causiingthecolum mntodeflecctlaterally,aandfinallyittwillfail. essesthatarresmallerth antheyieldstressof Thispheenomenonisscalledbuckling,anditooccursatstre thematterial(much smaller).Th hecolumnw wasdesignedbasedonth hetotalcom mbinednorm malstress acting o on the colum mn, and hence the buckkling of the beam b should d beam calcculated. Acco ording to mechanicsofmaterrialbyFerdin nandBeer;thhemaximum mloadthatthecolumnccanexposettobefore hefollowinggformula(Eu uler’sformula a): bucklinggcanbeobtaainedfromth P

π EII L

Where,  P :Thecriticalloadofthecolumn (thecolumn nbucklewhentheloadexxceeds P ). mula studies the bucklingg of the beam due to an n axial load where this load l acts The above form along th he centroid axes of colu umns. The lload which is acting on the actual column is from f the crossbeaam; this load creates both momennt and axial force on the column. TThe maximum stress becausee of bucklingg of a colum mn due to ann eccentric load can be determinedd from the following f formula: σ

P A

M Z

sec

L 2

P EI

Where, umaxialforceappliedto thecolumnatcentroida axis(22978.446N).  P:Themaximu Crosssection nareaofthe ecolumn(0.000363 ).  :C  :Momentatcentroidaxis(atpointA A)416.26N.m m.  :SSectionmod dulusoftheb beam(350.9 99 10 m )”.  L :Effectivelengthoftheccolumn(baseedonthetyypeoftheco olumn).Fortthecolumntthathave amequalstw wotimesthe ecolumn oneefixedendaandoneendfree;theefffectivelengtthofthebea origginallength.L 3.15 2 6.3  E:M Materialmodulusofelassticity(199.995GPa)  I: M Momentofin nertia(m )o ofthecolumnn(5421 10 m ). Note:seecthetaisth heinverseofcostheta;ittisinradianss(forthisforrmula).Them maximumsttressthat thesysteemwillexpo oseduetobu ucklingequa ls:

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 16of202

σ

22978.46 6

416 6.26 10

1

350.99 9

0.00363

C OS

6.3 2

22978.46 5421 10

199.95 1

7.52 28 MPa 100

Thelastequationcanbewriitteninadiffferentwayaasshownbelow:

σ

P A

M Z

sec

P P

π 2

σ

P A

M Z

1

COS

σ

22978.46 0.00363

416.2 26 350.99 10

P π EI L

π 2

1

COSS

π 2

1 π 199.95

7.5 528MPa

22978.46 10 5421 6.3 3

100

As w we can see the maximu um stress thhat the colu umn will exp pose to is 77.528 MPa (iincluding bucklingg effect); in the preceding section tthe maximum m normal sttress that coolumn will expose to equals 77.516 MPa. So, the selected beam ddesign is saffe where the e steel sectiion strength is much greatertthantheapp pliedstress. 

Sum mmaryofth heresults: Table51,Summa aryoftheresuults(Columnspecificationssfordoublessidedparks)

To otalverticalloadactinga atcentroid(ppointA) M Momentatp pointA Maxximumstresssthatthecolumnwillexxpose A AllowablestrressforAl‐Za amilIsectionnbeam Th heselectedIsection Crosssecctionareaofthecrossbeaam MassoftheeselectedIssectionperm meter Mo odulusofela asticityG Totalmassofthe crossbeam

2297 8.46 N 416.266 N. m 7.5166 95.833 MPa UB305xx102x28 0.003363 28Kgpeermeter 199.995GPa 28kg 3.155m=88.2Kgg

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 17of202 3.10.11 Forces on ccolumn (sin ngle side parrks): UB 3305 x 102 x 28 “I” sectiion from Zam mil steel waas selected for columns for single side parks whichisthesameseectionusedffordoublesi dedparksan ndcrossbeam ms.

Anaalyzingthefforces: Figu ure116,forceesoncolumn(singlesidep park)

From mtheabovepicturetheresultantforrce(thetotaalloadacting gonthecrosssbeam+the emassof thecrosssbeam)isth heonlyforce ethatactsoonthecolum mnofsingle sideparkst ructure(actstoward downwaard). As explained beforre, moving tthe resultan nt force to point p A creaates one mo ore force (couple));thepictureebelowshow wstheresulttantforcesattpoint“A”: Figure11 17,forcesonccolumn(singllesidepark)a atpointA

From mtheabovefreebodydiagram;thelloadsactingatpointA aredividedtoo: 1. Veertical load (axial load):: this load iss the resultant force from the crossbbeam; this force f will leaadtocompressthecolum mn,anditisequalto: F σ A 11489.2 F 23 N σ 3.1 165 MPa toward downw nward A 0.00363 3 m 2. M Moment whicch is producced due to moving the e resultant force f to poiint A; it is equal to (M M 11489.23 N 2.44131m 2 8048.772 N N. m ACW .

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 18of202 Findingthebendinggstressonth hecolumnd uemomentatpointA: m Z

σ 

M:thebendingmoment(28048.772N.m m).

Z:SSectionmodulusoftheIBeam(equaals350.99cm m “fromAl‐Z Zamilsteelccatalogue”). m 2 28048.772 N. m 79 9.913 MPa σ Z 35 0.99 10 m

mbinedforce(totalstress): Com

Them maximumCom mpressionfo orceactingoonthecolum mn(maximum mnormalsttress): Maximum m normal stre ess acting on n the colum mn Compression Maximum bend ding stress aat compresssed side of thhe column al stress coompression axia Maxim mum normal stress actin ng on the collumn Compression 3.165 M MPa 83.078 MP Pa C

79.913 MPa

As w we can see; the total sttress acting on the colu umn for sing gle side struccture is 83.0 078 MPa (compreession);theaallowableyie eldstrength ofthestructureis95.83 3MPa.Thereefore,thesizeofthe beamissuitableand ditisselecte edforthisstrructure. 

Collumnbucklin ng: σ

σ

11489.23 0.00363

28048 8.772 350.99 10

P A

M Z

sec

L 2

P EI

1 OS CO

6.3 2

199.95 1

489.23 114 10 5421

83 3.5 MPa 110

Acco ordingtotheeaforementiionedcalculaations;thedesignissafe. 

Sum mmaryofth heresults: Taable52,Summ maryofthereesults(Column nspecification nsforsingesiideparks)

To otalverticalloadactinga atcentroid(ppointA) M Momentatp pointA Maxximumstresssthatthecolumnwillexxpose A AllowablestrressforAl‐Za amilIsectionnbeam Th heselectedIsection Crosssecctionareaofthecrossbeaam MassoftheeselectedIssectionperm meter Mo odulusofela asticityG Totalmassofthe crossbeam

1148 9.23 N 28048.7772 N. m 83.0778 95.833 MPa UB305xx102x28 0.003363 28Kgpeermeter 199.995GPa 28kg 3.155m=88.2Kgg

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page11 19of202 3.10.12 Design of fo foundation ((recommen ndation for tthe size of th he foundatio on):

The reinforcedcconcretefoundationsor footingsare eusedtotran nsmitloadsffromastruccturetoa nd that totall load actingg on the colu umns for supporting soil. In the previous calculation,, it was foun singlesideismuchggreatercomp paredtodouublesideparkingstructurre,andhenccethefounda ationwill ontheloadsthatactontthesinglesid deparkscolu umn’s. bedesiggnedbasedo The pierfoundaationorpier andbeamfooundationconsistsofco oncretepiersssetintothe eground to bear the weight of desired structure (ccolumn).Pier foundations are less coostly than the more common n concrete foundation f and are eassier to build d [148]. The aim of thee calculation ns in this section istogiveap proposalhow wtodesigntthesizeofpierfoundatio onthroughuusingFEMAstandard (Federall Emergencyy Management Agency (FEMA) of United States). There are many types of foundation,anditissbettertocconsultaciviilengineerforselectingtheoptimum mtypeand forusing reinforcements(add dingsteeltoreinforceco ncrete).[149 9] 

erfoundation(footing)fforthecolum mnsusingFEMAstandarrd: Dessigningapie

A

Figure1 118,forceactingonthecollumn(pointA A)andreactiononthefootting[150]

ove shows the force (P ) acting on a column in n the centerr (point A) vertically v The picture abo nglengthequaltotheapppliedforceanditis toward downward; areactionissproducedbbythefootin n.Thefollow wingformulaa(fromFEMA)canbeussedtodeterm minethefoo otingsize oppositeeindirection required d(lengthand dwidthofth hefooting);ittisbasedon ntheapplied dforce,thehheightanddiimension oftheco olumnandth helandsoilb bearingpres sure:[150] L

P

h

x q

t t

W w

t

w

Checking,theunit,

L

m

N N

m

m

N

m m

N

m

m

m

m

&Givens: Where&

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page12 20of202 1. L:Squarefootingdimensio on(m)whichhistherequiireddimensiion. ppliedloadfrromthecolu umnthat 2. P : Theloadacctingonthe column(N) atpoint“A”.Itistheap willbetransmitttedtothefooting.This loadisprod duceddueto oaneccentriccload(thelo oadfrom theecrossbeam mactingonth hecolumn);tthisloadinccludes: A. Verticalloaad P whichactstowardddowntowaardanditise equalto114489.2Nplustthemass of the column (28 Kgg per m 9 9.81 3.15 m m 865.24 42; P 114489.23 86 65.242 2). 12354.472 B. Moment M M 28048 8.772 N. m;tthisforcewillincreasetthereaction forceonthe efooting (will be maaximum at one o point) beecause when n the bendin ng moment is transferre ed to the footing, thee soil pressu ure will not be uniform compared to a column with axial lo oad only. Thus, the moment sh hould be coonsidered; to o calculate the reactionn force in order to o (P ) the leength of the e footing (L) should bee assumed; then t the determine the value of hefootingw willbecalculaatedagainusingpreviousequation,aandfinallythecloset lengthofth sizetothe calculatedle engthwillbeeselectedfromastanda ard(IRC).Theeselectedsizeofthe orgreaterth hantheassum footingfromthestandardshouldbbeequaltoo medlength; because mum reaction n decreases when a forrce and mom ment are if the lengtth increasess the maxim appliedintthemiddle“sseethefolloowingformulla”).

Figure119 9,momentanndforceactinginthemiddleofthefootting

The figure abovve shows the forces actting in the middle m of the footing (m moment and d vertical med that the e footing is ffixed like a simply s supported beam in order to find the force); it was assum maximumreactionfforceintheffootingdue tomoment andvertical force.Also,itwasassum medthat theinitiaallengthoftthefootingiss0.65meterr. M L

L 2

0.65m

0.65m 2

RA RA A

RA R

ACW

P "vvertical forcee" 12354.472 2 N

P

RA

12354.472 2 N

M "m moment " 280 048.772 N. m

49329 .193 N tow ward upward d F

RB

CW

49329 9.193 N

36974.721 N twoard downward

Figure120,re eactionforceoontheleftsideandrightsideofthefooting

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page12 21of202 As w we can see the t maximum force wil l act on the e column at RA; thus thee foundation will be designed dtowithstan ndthisforce emultipliedbbytheFOS. P FOS S RA 3.6 6 49329.193 N 177585.1 N 3. h :Heightofpieraboveggrade(3.15m m). 4. X:D Distancefrom mgradetob bottomoffoooting(0.325m). 5. t :footingth hickness(0.3 325m). t 6. W :Columnw width(0.305m).(platew width) 7. t :Columnth hickness(0.1 1019m).(plaatelength)[1150] 8. w :Thedensityyofthefootingmaterial (concreate)(23544 N ).[151] m 9. q: TThe soil beaaring capacitty which is tthe capacityy of soil to support the loads applie ed to the gro ound. It represents the maximum ppressure thaat can be su upported byy soil before e failure. Com mmonly, thee soil in Bahrain is densee sand with gravel, and hence the ssoil bearing pressure equ uals(600 KP Pa)fromthetablebelow w.[152] Table53,Soilbearinggpressurefordifferentkind dsofsoil[1522] Soiltype Be earingvalue Rocks 1700 Deensegravelo ordensesand dandgravel >600 Denseggravelormeediumdense sandandgrravel 200‐6000 Lo oosegravelo orloosesand dandgravel 300 Mediu umdensesand 100‐3000 Veerystiffbould derclaysand dhardclays 300‐6000 Stiffclays 150‐3000 F Firmclays 75‐150 Calculatingtherequiredsizeoffthesquare footing(L): L

177585.1

3.15 0.325 600 10

0.325 0.305 0.1019 0.325 23544

235444

0.55

ordingtoIRC Cstandard; thenextmi nimumstandardfooting gsizeis 0.655 m L 0.65 L Acco 0.325 m m t shouldb beusedtore esistthegra vityloads(thelengthofftheassumeedfootingisequalto thelenggthofselecteedfootingfro omstandardd)∴thedesiggnissafe.(Se eeappendixH) The dimensionss of the fo ooting ( . . . ) for the parking structurre:

Figure e121,thedim mensionsofthhefooting(0.6 65m(L)×0.65 5m(L)×0.3255m(t))

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page122of20 02 3 3.10.13 Summary y of forces acting g on the structurre

Figure122,A)PartsofsinglesideparkingstructureB)P Partsofdoubleside eparkingstructure e ontheparkingstru ucture Table54,summarryofforcesactingo

N.O

Name

Forcesactting

Direction

Totalforce T

Stress(M MPa)

1

Purlin

Windload(direction nassumption) Massofmo odule

V Verticallydownward V Verticallydownward

1,568.475N(resultant)

Vonmissessstress 42.2MPa(fforwest rowss)

2

C Crossbeam

Windload&modulemass& Massofthepurlin

V Verticallydownward V Verticallydownward

10,123N

Combined dstress 69.702MPa

Notes n is tilted 11°; the resultant r force The purlin createsbe endingintwodirectio ons. Thetotal stressactingonthe purlin(tilt5)is 45.2MPa(foreastrows). o be a simply The purlin was assumed to dbeam. supported The crosssbeam is tilted 11°; the resultant force creaates combined stresss (bending and tension). The T crossbeam was assumed to be acantileve erbeam.

Page123of20 02 N.O

Name

Forcesactting

Direction

Totalforce T

Stress(M MPa)

3

Con nnectionbolts

Eccentricload(fforceand momentt)

Forcceverticallydownwarrd Mo omentanticlockwise

Force11,489.2 23N(loadoncrossbeaam+ masssofcrossbeam) Moment28,573.715N.m(ACW W)

Vonmissessstress 455.83MP Pa(with FOS)

4

Column

Eccentricload(fforceand momentt)

Forcceverticallydownwarrd Mo omentanticlockwise

Force11,489.2 23N(loadoncrossbeaam+ masssofcrossbeam) Moment28,048.772N.m(ACW W)

83.078MPa

5

Con ncretefooting

Gravitationalforce(vverticalforce) andmomeent

Forcceverticallydownwarrd Mo omentanticlockwise

6 7

Purlin Crosssbeam(west)

8

Crossbeam(east)

9

Con nnectionbolts

10

Column

11

Con ncretefooting

72N(loadoncrossbeeam+ Force12,354.47 massofcrossbe eam+massofthecollumn) Moment28,048.772N.m(ACW W) Sa ametonumber1

Sa ametonumber2 Windload&mod dulemass &Massoftheepurlin

V Verticallydownward V Verticallydownward

10,123N

Combined dstress 70.383MPa

Thecrossb beamistilted5°;theresultantforce creates combined stress (bending and tension). The T crossbeam was assumed to be acantileve erbeam.

Combined dstress 7.516M MPa

The vertical load leads to compress the column; the t moment leads to bend the column. The maximum strress including bucklingiss7.528MPa. Theverticcalforceandmomenttactatthetop ofthecolu umn(inthecenter“n neutralaxis”)

Sa ametonumber3 Twoverticalloadsffromleftand rightcrossbeeams. Twomomentsfromleftandright crossbeams;one(CW)and

Forcceverticallydownwarrd NeetMomentClockwise

Thetotalverticalloadis22,978.46 6N Thenetm momentis416.26N.m m

Sametonum mber5;(designedbasedontheforccesactingonsinglesidestructureb becausetheyarehighercompared dtodoublesidesttructure) Theselecteddimensionsforthefootingare0.65m(L)×0.65m(L)×0 0.325m(t) Theselectedsizeforconnectedplateh hasathicknessof20mm(selectedfromA AL‐Zamilcatalogue)

Notes 6 the diameter The total number of bolts is 6; olts expose to of bolts is 20 mm. The bo nd shear; the failure occurs due to tension an tensilestress. The rotattion of the connectiion plate (end plate)generatestensioninboltts. The vertical load leads to compress the t moment leads to bend the column; the column.TThemaximumbucklin ngstressis83.5 MPa. Theverticcalforceandmomenttactatthetop ofthecolu umn(inthecenter“n neutralaxis”) Thesizeo offootingwasassumeedinitially;the maximum reaction force was w calculated 1N)andusedtodesiggnthefooting. (177,585.1

Page12 24of202 3.11 Co omponents of the park king structu ure  Nut,BoltandW Washer(M20 0): ninnerdiam eterof20m mm;thebolthasanoute rdiametero of20mm The nutandwassherhavean andalengthof60m mm.Theseth hreecomponnentswillbeusedtoconnectthepurrlinwithcrosssbeams, mnswithanchorbolts(nuutandwashe er). connectthecrossbeeamswithcolumnandcoonnectcolum

Figgure123,boltt,nutandtwo owashers(M2 20‐L60mm)

BolltandWasher(M12): The nuthasaniinnerdiametterof12mm m;thebolthasanouterdiameteroff12mmandalength wocomponen ntswillbeussedtoconne ectthesolarrmodulesw ithsteelshe eets(four of35mm.Thesetw boltspermodule).

Figure1224,boltandnu ut(M12–L35 5mm)

Sollarmodule: A3d d‐modeldesignedtobessimilartoth eselectedm module(Cana adian“QuarttechCS6V‐22 25M”);it consists of 50 cells (5 cells 10 cells) 1 withh a size of (156mm 156 mm) 1 peer cell. Each h module esiredstructture“sheets””).Thelengtthofthe containss4holesforrconnecting themoduleewiththede moduleis1,638mm m,thewidthiis826mmanndthicknesssis40mm.

Figure125,a amodelforCCanadianSolarmodule(“QuartechCS6V V‐225M”)

Steeelsheets: Threee different shapes stee el sheets (steeel sheet 1, 2 and 3) will be used too form a solar array; eachsheeethas6holes(themidd dlesheetshaas12holes);;thesheetsw willbeused tofixthemo odulesin thedesiredposition,andtheshe eetscanbeeeitherwelde edorboltedw withthepurrlins. PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page12 25of202

Figure1266,Rightsidessteelsheet(sh heet1)

Notee:Theextrasteelontherightsideisaddedtoco overtheremainingparkaandforrainrunoff.

Figure1227,middleste eelsheet(she eet2)

Figure1228,Leftsidestteelsheet(sheet2)

Purrlins: The foursteelsheetswillbe efixedon7 purlinsthat areboltedw withtwocroossbeamsussingbolts sizeM200.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page12 26of202

Figuure129,Purliin(Csection)

Asssemblyof9modules,4ssheets,7purrlinsand36boltswithw washers(M220):

Figure130,(A)9modulessfixedbyfourrsteelsheetsusing36bolttsandwasherrs“sizeM12”(B)Solar hroughweldin ngthesheetssandpurlinsttogether array(9modulesand4sheets)fixedoon7Purlinsth esolararrayinncludingBoltsssixe(M20)w willbeusedtooconnectthe epurlins (C)Isometriicviewofthe withcrossb beams.

Cro ossbeams: The west side and a east side e crossbeam ms are used to carry the e solar arrayy; each crosssbeam is connectedinonesid deofacolum mnusing6boolts,6nutsaand12washe ers.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page12 27of202

Figure131,crrossbeam

The figure abovve shows mo odel for the crossbeam; the vertical holes (6 hooles) will be e used to connect the crossbeeam with the column annd the horizontal holes (7 on the leeft side and 7 on the de)willbeussedtoconne ectthecrossbbeamwithp purlins.Theccrossbeamisscutwithanangleof rightsid estandeast sideparksre espectivelytomatchthe etiltangle;th helength 5degreeesand11deegreesforwe ofthecrrossbeamis4.974m.  Collumns:

Figure132,Column

On the top of the t column there are 66 holes on the t right side and 6 holles on the left sides willusedtocconnectthecolumnwith hcrossbeam .Thebottom m6holes (diameteer20mm);ttheseholesw willused dtofixthecolumnonthefootingusiinganchorb bolts;theheightofthecoolumnis3.15 5m.  Sin nglesideparkkassembly((tilt5degreees):

Figure133 3,Singleside parkingassem mblywithfoo oting(tilt5deegrees)

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page12 28of202

Figure134,le eftandrightssidesheets(uusedtofixmo odulesandcov vertheremaiiningarea“sm mallgap”)

olararray Figure135,tiiltofthecrosssbeamandso

Figure136,bolts,w washersandnu utsfittedinsidethestructuure

Doublesidepaarkassemblyy(doublesloope):

Figure1 137,doublesideparkwith adifferenttilltangle(11°

and5 °

)–SideV View

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page12 29of202

Figure1 138,doublesiideparkwith adifferenttiltangle(11°

and5 °

)–Isome etric

Parrkingrows:

Figure13 39,BahrainPoolytechnicstu udentsparkin ngarea–Top view

The picture abo ove shows th he parking l ines of the students parking area ((the total nu umber of parksis 708(divided din9rows);thismodel containsalsoanchorboltswiththreeads(notcle earinthe picture““2388ancho orbolt”).Thisisthemosstcomplicate edpartbecausethesizeofthemodelisvery huge (ab bout 150 m by 160 m). The parkingg structure for f both single side andd double side will be assemblledwiththismodel.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page13 30of202 3.12 3d d design (asssembly of tthe car parrk): In th his section a a 3d model,, for single sside and double side ro ows is shownn to clarify how the structureisassembledtogetherr,alsotoproovethattheentirepark (car)iscoveered.Afullm modelof hnicstudentsparkingareeaisshownaaswell. theBahrrainPolytech  Sam mplemodelforsinglesideparking((for5vehicle es)–solararrraysaretow wardwestw withatilt of111degrees: Notee:thecarmo odel(AlfaRom meoBRERA)istakenfrom mGrabCadwebsite;theeauthorofth hecar mod elisZoranSStoric.

Figure14 40,Singlesideeparktilt11(arraystoward dwest)–sideeview

Figure141 1,Singleside parktilt11(a arraystoward dwest)–fronntview

Figure14 42,Singlesideeparktilt11(arraystoward dwest)–Isom metric

Sam mplemodel forsinglesideparking((for5vehicle es)–solararraysaretow wardeastw withatilt of55degrees:

Figure14 43,Singlesideeparktilt5(a arraystoward deast)–Isom metric

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page13 31of202

Figure14 44,Singlesideeparktilt5(a arraystoward deast)–side view

Sam mplemodelfordoublessideparking (for5vehiclles):

Figure14 45,doublesid deparkrow;w westarraystiilted11°andeastarraystiilted5°–sideview

Figure14 46,doublesid deparkrow;w westarraystiilted11°andeastarraystiilted5°–Isom metric

Fulldesign:

F Figure147,Ba ahrainPolytecchnicstudent parking(9pa arkingrows)––sideview

F Figure148,Ba ahrainPolytecchnicstudentparking(9pa arkingrows)––Isometric

The twopicturesaboveshowthetotalrrowsofthe solarparking gsystemforrBahrainPolytechnic studentssparkingareea.Asshown n,thefirstroowissingleaandthearraysaretowa rdwest,thelastrow issingle andtherow wsaretowarrdeast.The middlerowssaredoublesided;thetootalnumberrofparks is708.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page13 32of202 3.13 Wa ater manag gement systtem (option nal):  Gro oundSewer:: In th his option a water trencch is createdd in the grou und; this tre ench is conn ected with the t main seweragge network. Trench grattes are usedd to cover the t water trrench so onnly liquids ca an move throughit,andforth hemovemen ntofvehicless.

Treenchgrates Fi gure149,Gro oundSewer

ownpipes: Gutttersanddo In th his option a long horizontal open p ipe (half circcular) is connected withh the purlins (A); this pipe is tthen conneccted with a vertical v pipee (B) which is full circular (or full cloosed), and hence the wastew water(fromrainandmain ntenanceproocess)movetomainsew weragenetwoork.

FFigure150,PipesSewer

Optiion1seemstobemoreusefulbecauuseitassistsincontrollingthewater thatfallson thepark andthesurroundinggarea,alsoittdoesnotefffectonthessizeofthepa ark.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page133of20 02 3 3.14 Bill of mate erial: The table below shows list off the materials reequired to build the parking struccture for Bahrain n Polytechnic students parking area; a more details regardingthetotaalcostwillexplain nedincostanalysiissection.

Row2 Row3 Row4 Row5 Row6 Row7 Row8 Row9

39 49 57 62 58 48 36 28 21

Anchorr bolts

Nutand washer M20

39×6== 234 49×6== 294 57×6== 342 62×6== 372 58×6== 348 48×6== 288 36×6== 216 28×6== 168 21×6== 126

39×6= 234 49×6= 294 57×6= 342 62×6= 372 58×6= 348 48×6= 288 36×6= 216 28×6= 168 21×6= 126

2388

2388

C Columns

Crossbeea m(11°ttilt)

Crossbea m(5°tilt)

39

39

49

48

48

57

56

56

62

62

62

58

58

55

48

48

45

36

36

33

28

28

25

21

21

398

375

345

Nut,bolt andwasher M20

Purlin ns (wesst)

39×6= 234 (48+48) ×6=576 × (56+56) ×6=672 × (62+62) ×6=744 × (58+55) ×6=678 × (48+45) ×6=558 × (36+33) ×6=414 × (28+25) ×6=318 × 21×6= 126

38×7 7= 266 6 48×7 7= 336 6 7= 56×7 392 2 61×7 7= 427 7 7= 57×7 399 9 47×7 7= 329 9 7= 35×7 245 5 27×7 7= 189 9 0 258 83

Total

708

398

4320

Steel S she eets(4 pie eces)

Solar modules

Boltand washer M12

140×2= 280

Totalnumberofmodules×numberofboltsand washerspermodule =6372×212744

East0 West38 East48 West48 East56 West56 East61 West61 East57 West54 East47 West44 East35 West32 East27 West24 East0 West20

Row1

Co oncrete ffooting

Numberofparks×numberofsolarmodulesperpark= 708×9=6372

Numberof parks

Row

Numberofparks×numberofsheetsperpark=708×4= Number of parks× number of sheets per park = 708×4 = 2832

Table55,,listofthemateriaalrequiredtobuildtheentireparkinggstructure

9912

2832

6372

12744

Purlins (east)

Nut,boltand washerM20

266×2= 532

48×7= 336 56×7= 392 61×7= 427 54×7= 378 44×7= 308 32×7= 224 24×7= 168 20×7= 140

(336+336) ×2=1344 (392+392) ×2=1568 (427+427) ×2=1708 (399+378) ×2=1554 (329+308) ×2=1274 (245+224) ×2=938 (189+168) ×2=714

2373

2583 3+2373=4956 Or708×7=4956

Page13 34of202 3.15 To otal stress ffrom Solidw works (FEA)): Acco ordingtotheeresultssum mmarytablee(table55in nsection3.1 10.13)them maximumstre essesact onthefo ollowingcom mponents: 

Eastsidepurlins(tilt5);(distributed force=

. .

6199.951N).

 

ossbeams(tillt5);(resultaantforce101 123N“actsinthemiddlee”). Eastsidecro N.m) and axxial force Single side columns; c (exxposes to annti clock wisse moment (28048.772 ( N 11489.2 N; the verticall force and moment acct at the top of the coolumn (in the center “neutralaxiss”) mandcolum mnwillbeanaalyzedbased donthesecoonditionsonlly. Hence,thepurlin,crossbeam 3.15.1 Total stress acting on purlin: The picturebelo owshowsth hetotalVon missesstresssactingon thepurlin;iitisobvious thatthe mlydistribute ed.Theranggeoftotalstrressisfrom0.1969MPaa(minimum)to50.26 stressisnotuniform MPa(maximum).Th heallowableyieldstress oftheAl‐Zam milsteelis95.83MPa;thhismeansth hedesign esstressfrom mthetheore eticalsection nis45.2Mpaa;theerrorbetween issafe.TThecalculateedVonmisse theresu ultsis10%. Theerroro occurreddueetodifferentreasons su uchas; the ssection modulusthat obtained dfromtheccataloguema aybeinaccurrate,therad diusoffilleto oftheCsecttionmaybeincorrect (obtaineedfromanonlinesource e).

Figure151,totalbeendingandaxxialstressactingonthepurrlin

3.15.2 T Total stress acting on crrossbeam: Pictu ure152show wsthetotal bendingan daxialstressactingontthecrossbeaam;itisobviousthat thestressisnotuniformlydistributed.The rangeoftottalstressisffromabout00MPa(minimum)to MPa(maximum).Thestre essontherigghtsideofth hebeamisapproximatel yzerobecau useitisa 71.77M cantileveerbeamand dtheapplied dloadactsinnthemiddle e(thereisno oloadactonntherightside).The allowableyieldstresssoftheAl‐ZZamilsteeliss95.83MPa;thismeansthedesignisssafe.Theca alculated oreticalsectionis70.3833Mpa;theerrorbetween ntheresults is1.9%.The eerroris stressfrromthetheo very sm mall and mayy happen du ue to small vvariation between Solidworks sectioon modulus and the catalogu uedata.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page13 35of202

Figure15 52,totalbenddingandaxialstressactingonthecrossbbeam 3.15.3 T Total stress acting on crrossbeam:

The picturebelo owshowsthetotalbenddingandaxiaalstressactingonthecoolumnwhich hisequal nissafe. to83.144MPa;thettotalstressislessthanttheallowablleyieldstresss,andhencce the design Thecalcculatedstressfromtheth heoreticalseectionis83.1 18 Mpa;theerrorbetwe entheresultsis0.05 %.Therrefore,theth heoreticalcalculationsm matchtheSolidworksvalu ues.

Figure1 153,totalbenndingandaxia alstressactin ngonthecoluumn

3.15.4 C Comparison n between So olidworks sstress values and calcullated stresss values: The chart below w compares between thhe total stre esses calcula ated theorettically and the t total omSolidworrks: stressesobtainedfro

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page13 36of202

Figure15 54,totalstresssactingonth heparkingcomponentsin MPa

3.16 Po ower calculation: 3.16.1 P Performancce reduction n factor calcu ulation:  Low wirradiance eperformanccereductionnfactor (constant): Acco ordingtoCan nadiansolar modulema nual(cataloggue)theaveragelowirraadianceperfformance reductio onfactorPF is0.965.[134] [ 

Dustanddirtp performancereductionfaactor (constant): nfactorPF Atypicalannualdustanddirrtperformanncereduction

useis0.93.[1 115] factortou

wertolerancceperformancereductioonfactor Pow (constant): The powertolerranceofthe Canadianm moduleisfrom0to5%;tthismeansttheCanadian nmodule duce equal to or greate er than the m p (225 W). Hence tthe power tolerance t can prod mentioned power reductio onfactorPF willbe1. 

Missmatchandwiringperfo ormanceredductionfacto or (constant): Thereasonablemismatchan ndwiringperrformancere eductionfactorPF iss0.95.[116]

uctionfactorr (consta ant): Invverterperforrmanceredu Theinverterperrformancere eductionfacttorPF equaals0.95.[11 16]

mperaturecoefficientpe erformance reductionfa actor variable–m monthly)  Tem (v Theredu uctionfactorrcanbecalculatedfrom thefollowin ngformula: 25 T PF 1 Temperrature coeffiicient K Where, mperaturecooefficientperrformancere eductionfacttor.  PF :Solarmoduletem entofthem odulewhich hisequalto((‐0.41%/ )).[134]  K:Temperatturecoefficie perature(25 )andamb bienttemperature.[36]  T :Totaloftthecelltemp

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page13 37of202 Accordin ngtotable15;thetempe eraturecoeffficientperfo ormanceredu uctionfactorrinJanuarye equals: 20 25 PF 1 0.00 041 25 0.918 Thetem mperaturecoefficientperformancereeductionfacttorfromJanu uarytoDeceember: Table56,tem mperaturecoe efficientperfoormanceredu uctionfactorffromJanuary ytoDecember PF

Jan 0.918

temperaaturecoefficie entperformaancereduction nfactorfromJanuarytoDeecember Feb M March Ap pril May June July Aug A Seppt Oct 0.913 0.900 0.8 879 0.861 0.850 0.845 0.845 0.8550 0.863

Nov 0.886

Dec 0.909

Mo oduledegrad dationreducctionperform mancereducctionfactor able‐yearly)): (varia The performancceofsolarm modulesdecrreaseswithttime;theCanadiansolarrmodulehassalinear dropinp poweroutpu utfrom97% %(firstyear)tto80%(afte er25years); thismeanstthepowerdecreases by

% % per year; the t table be elow shows the module e degradation performannce reductio on factor

PF

orthefirst25 5years:[134] fo Table e57,Moduledegradation performance ereductionfactor

Year 1 2 3 4 5

P PF 0.97 0.962917 0.955833 0.94875 0.941667

YYear 6 7 8 9 10

PF F 0.93 34583 0.9 9275 0.92 20417 0.91 13333 0.9 90625

PF 0.899 9167 0.892 2083 0.8 885 0.877 7917 0.870 0833

Yeear 111 112 113 114 115

Yea ar 16 6 17 7 18 8 19 9 20 0

perryear

PF 0.863775 0.8566667 0.8495583 0.84225 0.8354417

Figure155Moduledegradatioonperformancereductionffactor

P PF January y, year 1

0.965

0.9 93

1

0.9 95

0.95

0.918

[[134]

Exampleeforcalculattingperform mancereducttionfactorin nJanuary(year1): PF Januarry, year 1 PF P PF PF PF PF PF 0.997

PF 0.82833 33 0.82125 5 0.81416 67 0.80708 83 0.8

Year 21 22 23 24 25

PF 0.7212 2

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page13 38of202 3.16.2 C Calculating rreduction fa actor for thee first year: P PF year 1 PF PF P PF PF PF PF F PF → 1 [117 7] Thetabllebelowsho owsperforma ancereducti onfactor(PFF)duringfirsstyearofinsttallingsolarsystem: Table58,p performancerreductionfacttorpermonth h(firstyearo ofinstallingsoolarsystem) Month h January 0.918 8 0.7212 Februarry 0.913 3 0.7173 March h 0.900 0 0.7071 April 0.879 9 0.6906 May 0.861 1 0.6764 June 0.85 0.6678 1 0.97 0.965 0.93 0.95 0.95 July 0.845 5 0.6639 Augustt 0.845 5 0.6639 Septemb ber 0.85 0.6678 Octobeer 0.863 3 0.6780 Novemb ber 0.886 6 0.6961 Decemb ber 0.909 9 0.7142 3.16.3 P Park rows to otal area: The tablebelow wshowsthe areacovereedbysolarm modulesfor eachrow;ittdividesthe erowsto dwestsides,,andthenitfindsthetottalareaforw westandeasstsides(the areaofeach hparking eastand rowwasscalculated intable32).Thetotal areaswillussedtofindthetotalpow werproduce edbythe solarparkingsystem m. Table59,totalsolarm modulesareafforwestande eastparks

Westsideparkingrow ws Parkinggrows

Eastsideparrkingrows

Modulesareaperrow w

Parkingro ows

Modulesareaperrow

Row w1

46 62.721896

Row2

584.490816

Row w3

58 84.490816

Row4

681.905952

Row w5

68 81.905952

Row6

742.790412

Row w7

74 42.790412

Row8

694.082844

Row w9

65 57.552168

Row10 0

572.313924

Row11

53 35.783248

Row12 2

426.19122

Row13

38 89.660544

Row14 4

328.776084

Row15

29 92.245408

Row16 6

243.53784

Totalaarea

434 47.150

Totalare ea

4274 4.089

Figure156 6,totalsolarm modulesareaforwestand deastparks

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page13 39of202 3.16.4 E Energy calcu ulation mon nthly (for on ne year): Acco ording to effficiency of the Canadiann modules, the t calculate ed area of thhe parking rows r and PVgis p photovoltaic online calcculator (CM ‐SAF PVGIS data); thiss section caalculates the e power produceedbythesystem.

Callculatingene ergyproduce edbywestssidesolarmo odules: Table60,energyprooducedbywestsidesolarm modules Westp parksTilt11° ‐ E A η H PF Perform mance M MonthlySolarirrradiance Effiiciency( ) To otalarea(A)(( ) (H)( / ) factor r(PF) 120.9 0.72212 133.56 6 0.71173 183.83 3 0.70071 195.3 0.69906 237.15 5 0.67764 240 0.66678 4347.150 16.63% 1 235.6 0.66639 220.1 0.66639 198.3 0.66678 177.01 1 0.67780 123.9 0.69961 117.8 0.71142

Month M Jaanuary Fe ebruary March M April May June July August A Sep ptember October O No ovember De ecember

Total T 

2183.45 ‐ ‐ Callculatingene ergyproduce edbyeastsiidesolarmo odules:

Table6 61,energyprooducedbyeasstsidesolarm modules WestparksTilt5° ‐ E A η H PF Perform mance M MonthlySolarirrradiance Effiiciency( ) To otalarea(A)(( ) (H)( / ) factor (PF) 108.5 0.72212 123.2 0.71173 175.46 6 0.70071 192.3 0.69906 239.32 2 0.67764 245.1 0.66678 4274.089 16.63% 1 239.01 1 0.66639 218.86 6 0.66639 190.8 0.66678 163.99 9 0.67780 112.5 0.69961 104.47 7 0.71142

Month M Jaanuary Fe ebruary March M April May June July August A Sep ptember October O No ovember De ecember

0.6887(aaverage)

Totaal Eneergyproduce edbyBahrainPolytechnnicsolarparkkingprojectmonthly:

Month

January February March April May June July

Energyproduc E ced monthly(E)(KW m WH) 63,034.58 69,258.67 93,971.05 97,504.73 11,5964.1 11,5865.6 11,3077.1 10,5637.9 95,733.96 86,760.96 62,350.48 60,822.18

1,079,981.339

Energyproduc E ced monthly(E)(KW m WH) 55,618.76 62,812.68 88,185.01 94,393.41 11,5058.4 11,6339.1 11,2785.8 10,3277.3 90,565.04 79,028.34 55,662.15 53,033.13

1,026,759.129

Table6 62,energypro oducedbyBahhrainPolytech hnicsolarparrkingprojectm monthly Pow werproduceddmonthly(E)(KWH) TTotalenergyp permonth(KW WH) Westsideparks Eastsideparkss 63034.58 55618.76 118 8,653.3 69258.67 62812.68 132 2,071.3 93971.05 88185.01 182 2,156.1 97504.73 94393.41 191 1,898.1 115964 4.1 115058.4 231 1,022.5 115865 5.6 116339.1 232 2,204.7 113077 7.1 112785.8 225,863

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page14 40of202 August Septemberr October Novemberr Decemberr

105637 7.9 95733.96 86760.96 62350.4 48 60822.18

103277.3 90565.04 79028.34 55662.15 53033.13

Total

1079981(KWH)

10 026759(KWH H)

208 8,915.2 186,299 165 5,789.3 118 8,012.6 113 3,855.3 2,106,740(2 2.1067GWHp per year)(5.77 7MWperday))

Figure157,Powerpro oducedbyBaahrainPolytecchnicsolarparkingprojectmonthly

Assshowninfigu ure157,the eamountof electricityvvariesthroug ghouttheyeear;itisobviousthat the maxximum amou unt of electrricity will be produced from May to o September r where during these timesBaahrainexpossetohigham mountofsu nenergy.Th heannualelectricitywilllbeproduce edbythe systemeequals2.1GWH. 3.16.5 C Comparison n between th he amounts of solar irrradiance esttimated usin ng reduction n factor and PVg gis online ca alculator wiith experim mental resultts: The total amount of solar radiation r esttimated in th he first year for tilt 11 ddegrees and azimuth 58.3deggreesis2183 3.45(KWh/m m^2),theaveerageperforrmancereductionfactor is0.6887.Hencethe systemw wouldcollecctabout1503 3.74KWhpeersquareme eterinthefirrstyear. AstudydoneinBahrainreggardingtheppotentialof makingsusta ainablebuilddingsinthe Kingdom ountofsolarrirradiancew wasmeasure edexperimeentallyforAl‐Moayed ofBahraain;inthissttudytheamo tower(lo ocatedinMaanama)ford differenttilt angles(0,10 0,16,20,30)andtoward south(azimu uth180). [8]. Thee total solarr irradiance measured eexperimentaally for tilt 10° and 1 azim muth 180° is 1774.8 (KWh/m m^2)peryear.[8] Thetilt10degreees(experime entally) canb be compareddwithtilt11(online calculato or);theerrorisassumed dtobenegliggible.Accord dingtosectio on3.5thew westsidemod dulesare 58.3 degrees away from true south; baseed on equattion 2 the average droop of solar modules mtruesouth: mountedawayfrom

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page14 41of202 PF

1

58.3 5

1 .1%

0.8 87174 wesst side moduules

Hence,theexpeerimentalsolarirradianceeisequalto:: Experrimental solar irradiancce Solar irradiance tilt 10 t PFF E Experimentaal solar irrad diance 17 774.8 0.87 7174 154 47.16 KWh/m m per yearr Tablee63,annualaamountofsolarirradianceecalculatedussingonlineca alculatorand experimentaldata

Solarrirradianceb basedon onlinecalculatoran ndaverage Perform mancereducctionfactor 1503.7 74 KWh/m per year

Solari rradiancebaasedon expe rimentaldattaand equation2 1547.16 6 KWh/m per p year

D ifference% 2.81%

Asshownontheeabovetable,theannuaalamountoffsolarradiattionbetweennthetwome ethodsis very close where th he difference e is 2.8 % onnly; this meaans both solar irradiancce data are accurate. a Thereissnoexperim mentaldataffortilt5deggrees(there aredataforrtilt0degreeesand10d degrees). The aveerage value (between tilt 5 degreees and 10 degrees) cannot be usedd because the t solar irradiancce is not either directly or inverselyy proportional to the tiltt angle wherre it depend ds on the motion oftheearthinrelativettothesun.F orthisreaso ontheonline ecalculatoruusedtoestim matethe solarirraadiancefortthisproject.Theproject implemente edinAwaliproduce5GW WHperyear;Bahrain Polytech hnicproject wouldproduce2.1GWH Hperyear.TThepowerp producedbyyBahrainPolytechnic projectsseemstobeereasonable incomparissonwiththe esizeofprojectimplemeentedinAwa ali(other factorefffectsontheepowerasw welllikeefficiiencyandtilttangle). 3.16.6 E Energy calcu ulation yearrly (for 25 yyears): Theenergyproducedperyearca anbecalculaatedusingth hefollowingformula: Tottal energy pro oduced in dessired year

,

,

Total en nergy produce ed in desired d year

Total en nergy produced in desired d year

217 71896.907

.

PF PF

PF

for desirred year

for ddesired year

for ddesired year

Thro oughusingtable58inse ection3.16.11;theenergyyproducedbythesysteemperyear isshown below: Table64 4,totalenergy gyproducedb bythesystemperyear

Year

Totalenergy produce ed(KWH)

Year

To otalenergy prod duced(KWH)

Yeear

Totalenerggy produced(KW p WH)

2 3 4 5 6 7 8 9

2,09 91,356 2,07 75,971 2,06 60,587 2,04 45,203 2,02 29,819 2,01 14,434 1,99 99,050 1,98 83,666

10 11 12 13 14 15 16 17

1,968,282 1 1,952,897 1 1,937,513 1 1,922,129 1 1,906,744 1 1,891,360 1 1,875,976 1 1,860,592 1

188 199 200 211 222 233 244 255

1,845,207 7 1,829,823 3 1,814,439 9 1,799,055 5 1,783,670 0 1,768,286 6 1,752,902 2 1,737,518 8

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page14 42of202

Figurre158,PowerrproducedbyyBahrainPolyytechnicsolarrparkingprojjectyearly

3.16.7 M Meters read dings (from EWA Meter r Reading De epartment) – energy co onsumption n: Accordin ngtoEWAM MeterReadin ngDepartmeent(Novemb ber,2015)

Thenumberrofpowersubstation(eelectricitydisstributionsta ation)inwhooleIsaTown ncampus is five. Thrree substations (electriccity distribu ution station n) contain 22 meters, and a two substationscontain3me eters(thetootalnumbero ofmetersis12).  EWAgavem mecopyofm metersreadinngsfromJulyytoOctober (4months) for12meters.These readings will be used to t calculate the power consumptio on from Julyy to October and to approximateethepowerconsumptio nperyear. Theread dingsofthemeters(KW‐‐h)ineachm month(Julyto oOctober)a areshownbeelow: Table65,energyco onsumedbyIssatowncamp pusinKW‐hfromJulytoO October

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page14 43of202 Tab ble 65 show ws the energyy consumedd by Isa town campus in n KW‐h from m July to Octtober; as shown o on the tablee the minim mum amoun t of energy was consumed in Auggust (during summer holiday and tutors annual a leave e). The net rreadings are e for both un niversity of Bahrain and d Bahrain hnic; the piccture below shows the ccampus map p (the red buildings are Bahrain Polytechnic Polytech buildinggsandWhitebuildingsareUOBbuild ings):

Figure1 159,Isatown campus[153](dimensionssinmm)

Baseedontheab bovemap;theestimated areasofthe ebuildingsarreshownbellow: Table66,totalareaaofBahrainP Polytechnicbu uildings

N.O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Building 30 C9 C8 16 19 H26 26 9 10 24 11 36 20 5 12 8

Bahrain Polytechnic buildings leve els Estimatedareaa( ) 29.6 1 53.3 1 21.6 1 208.266 1 232.411 3 14.3 1 91.8 1 15.488 1 29.7 2 65.288 2 55.333 2 106.22 2 78.844 2 64.488 1 110.44 1 37.833 2 Tota al

Totalare ea( 29 9.6 53 3.3 21.6 208 8.26 697 7.23 14 4.3 91.8 15 5.48 59 9.4 130 0.56 110 0.66 21 12.4 157 7.68 64 4.48 11 10.4 75 5.66 205 52.81

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

)

Page14 44of202 Table6 67,totalarea ofUniversityyofBahrainbuildings

University tyofBahrain nbuildings N.O Building leve els Estimatedareaa( ) Totalare ea( ) 1 15 282.22 2 56 64.4 2 14 412.22 2 82 24.4 3 13 54.322 2 108 8.64 4 18 29 2 58 5 5 27 231.544 2 463 3.08 6 28 98.799 2 197 7.58 7 29 22.966 2 45 5.92 8 32 58.288 1 58 8.28 9 33 53.322 1 53 3.32 10 34 99.2 1.5 5 14 48.8 11 35 70.2 2 14 40.4 12 31 51.666 2 103 3.32 Tota al 276 66.14 TheratiooftotaalBahrainPo olytechnicbuuildingsareatoIsatownwholecamppusarea( ): 2 2052.81 42.6 % % 2052.8 81 2766.1 14 Bah hrainPolytecchnicbuildingsrepresentt42.6%oftthetotalare eaofIsatow wncampus.T Thisratio will be aapproximateed to 45 % (for human eerrors while measuring the dimensi ons). Thereffore, it is assumed d that Bahraain Polytechnic consumees 45% of the total electricity conssumed by th he whole August(BahrainPolytech campus..TheenergyyconsumedffromJulytoA hnic): Tabble68,theeneergyconsumeedfromJulyttoAugust(BahrainPolytecchnic) Month Totale energyconsuumed(KW‐h h) July 454 4944×0.45= 204,724.8 A August 374 4912×0.45= 168,710.4 Seeptember 480 0952×0.45= 216,428.4 O October 396 6084×0.45= 178,237.8 Total(4months) 768101.4KKW‐h Totalpowerconssumedinoneyearisequualtoapproxximately768101.4×3=22,304,304.2KW‐h ComparisonbetweeenEnergycon nsumedand generatedffromJulytoO October(BahhrainPolytecchnic):

Figure160,EEnergyconsumedandgen eratedfromJJulytoOctobe erforBahrainnPolytechnic

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page14 45of202 Figu ure 160 compares betwe een the eneergy consumed and generated from m July to Octtober for Bahrain Polytechnicc. In July, 11 10.3 % of thhe electricityy is covered by the solaar parking syystem, in August1123.8%,inSSeptember8 86.1%and993%inOcto ober.Thisme eansduringssummerholiday,the solar paarking system m would pro oduce electriicity more th han the requ uired (meterrs moves ba ackward). Thefigurebelowcom mparesbetw weentheannnualenergycconsumedandgeneratedd.

Figure e161,EnergyconsumedanndgeneratedperyearforB BahrainPolyttechnic

Asshownontheeabovepictu ure,annuallyythesolarparkingsystemwouldprooduce2,106,,740KW‐ h of eneergy; since Bahrain B Polyytechnic con sumes 2,304 4,304.2 KW‐‐h. This meaans the solarr parking systemw wouldcoverabout91.4%oftheeneergyconsum medbyBahra ainPolytechnnic.Thesolarparking system produce5.768MW‐hda aily(averagee),andBahraainPolytechnicconsumees6.309MW W‐hdaily (averagee). Expandin ng the project and usingg power savving appliances would ccover whole e Bahrain Polytech hnicbuildinggsenergyreq quirements. 3.16.8 E Electricity p prices in Bah hrain ‐ Savin ngs (25 yearrs): Thetabllebelowsho owselectricittyprices(tar iff)inBahrain(fromEWA Awebsite): Table e69,electricittypricesinBa ahrain(tariff)[154] DomesticcResidentiallTariff No on‐DomesticcTariff From1to3 3000unit(0.003BD) FFrom3001to o5000unit(0.009BD) 0.016BD D Over500 00unit(0.01 16BD) Note:Electricityuunit=1kilow watt‐hour(kkWh)

Acco ording to EW WA staffs, th he universitiies are classsified as a non‐domesticc sector (com mmercial sectors specifically);thecostof electricitypperKW‐his0 0.016BD.EW WAannounccedthatthe pricesof electricittywillincreaasein(2016))asshownbeelow:[154] Table70,ttheelectricityytarifffornon‐domestic(2 2016)[154]

MonthlyConsumption From250,000upto500,000u units Over500,0 000units

Tariff BD0.020 0perunitasofbeginninggOctober20 016 BD0.028 8perunitasofbeginninggOctober20 016

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page14 46of202 Acco ording to table 70, and if the projeect will be im mplemented in 2017; thhe price of electricity e wouldb be0.02BDperKWh(tariiff).Thetabl ebelowsho owsthetotallsavingsfor 25years(th hepower consumptionwasasssumedtobe econstant): Table71,ttotalsavingsfor25year

Yearr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Poweer Consum med (KW‐h h) 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2 2,304,3004.2

PriceBD yearly 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084 46,0 086.084

Power Produced (KW‐h) 2,106,740.0 2,091,355.7 2,075,971.5 2,060,587.2 2,045,202.9 2,029,818.7 2,014,434.4 1,999,050.1 1,983,665.8 1,968,281.6 1,952,897.3 1,937,513.0 1,922,128.8 1,906,744.5 1,891,360.2 1,875,976.0 1,860,591.7 1,845,207.4 1,829,823.1 1,814,438.9 1,799,054.6 1,783,670.3 1,768,286.1 1,752,901.8 1,737,517.5

PriceB BD yearly

OldbillsBD pe eryear

N NewbillsBD D peryear

42,134 4.8 41,827 7.1 41,519 9.4 41,211 1.7 40,904 4.1 40,596 6.4 40,288 8.7 39,981 1.0 39,673 3.3 39,365 5.6 39,057 7.9 38,750 0.3 38,442 2.6 38,134 4.9 37,827 7.2 37,519 9.5 37,211 1.8 36,904 4.1 36,596 6.5 36,288 8.8 35,981 1.1 35,673 3.4 35,365 5.7 35,058 8.0 34,750 0.4

46,0 086.084 3,951.3 46,0 086.084 4,259.0 46,0 086.084 4,566.7 46,0 086.084 4,874.3 46,0 086.084 5,182.0 46,0 086.084 5,489.7 46,0 086.084 5,797.4 46,0 086.084 6,105.1 46,0 086.084 6,412.8 46,0 086.084 6,720.5 46,0 086.084 7,028.1 46,0 086.084 7,335.8 46,0 086.084 7,643.5 46,0 086.084 7,951.2 46,0 086.084 8,258.9 46,0 086.084 8,566.6 46,0 086.084 8,874.3 46,0 086.084 9,181.9 46,0 086.084 9,489.6 46,0 086.084 9,797.3 46,0 086.084 10,105.0 46,0 086.084 10,412.7 46,0 086.084 10,720.4 46,0 086.084 11,028.0 46,0 086.084 11,335.7 Totalsaving((25years)

SavingBD perye ear 42,134 4.8 41,827 7.1 41,519 9.4 41,211 1.7 40,904 4.1 40,596 6.4 40,288 8.7 39,981 1.0 39,673 3.3 39,365 5.6 39,057 7.9 38,750 0.3 38,442 2.6 38,134 4.9 37,827 7.2 37,519 9.5 37,211 1.8 36,904 4.1 36,596 6.5 36,288 8.8 35,981 1.1 35,673 3.4 35,365 5.7 35,058 8.0 34,750 0.4 961,064.4 4BD

Note:  Theoldbillsrepresentth hecostofeleectricitybillsswhensolarparkingsysttemisnotinstalled.  Thenewbillsrepresentthecostofeelectricitybillswhensolarparkingsysstemisinsta alled. Asshownontab ble71,imple ementingtheesolarparkingprojectw wouldsaveabbout961,064 4.4BDin 25yearss.Thechartsbelowcomp paretheave ragecostofelectricitybillspermontth:

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page14 47of202

Figure162,averagecosttofelectricityybillspermon nthforBahrainPolytechnicc(firstyear)

Figu ure163,averaagecostofelectricitybills permonthfo orBahrainPollytechnic(aveeragefor25yyear)

Pictu ure 162 sho ows the de ecrease of eelectricity bills during first f year; inn this year Bahrain Polytech hnicwouldp payonly8.5% %ofthebillss(withsolarproject).Piccture163,shhowsthedeccreaseof electricittybillsdurin ng25yearsw wheredurinngthisperiod dBahrainPo olytechnicw willpay16.6 %ofthe bills.Thiismeansimplementing thesolarpa rkingprojectwoulddecreasetheeleectricitybillssby83.4 %forfirst25years. verter selection: 3.17 Inv BahrainPolytech hnicsolarpa arkingprojecctisalargesscaleprojectbothcentra landmicroinverters ofmicroinvertersmenttionedinsecction2.9, aresuitaableforthisproject.Bassedontheaadvantageso andBah hrainPolytechnicsolarpa arkingsystem misalargesscaleprojectt;microinve rterswillbeusedfor thisprojject. 3.17.1 E Enphase com mpany onlin ne calculato or: Enphase energyy is a design ner and ma nufacturer of o micro solar inverterss Company; Enphase microin nvertersareaavailableworldwide.In22015,Enphassehadareco ordofshippiing575MWofmicro invertersandgrowingrevenue 48%.[155] Enphaseselllsdifferent sizesofmicrroinverters,andhas ononlin netoolthatd determinesw whethertheemoduleisccompatiblew withtheinveerterornot.Thistool requiressentering5p parametersa asmentioneedbelow:  Voc:Themo odulevoltagewhenitis notconnecttedtoanylo oad;fromCaanadiansolarrmodule datasheetV Vocequals31.8V. m volta age when it is producingg the maximum power; from Canadian solar  Vmp: The module moduledataasheetVmp p equals26V V.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page14 48of202 

 

Temperature coefficien nt of Voc: tthis coefficiient is used d to determ mine the effect e of temperatureeonthepho otovoltaicm oduleopen circuitvoltage.FromCaanadiansolarrmodule datasheetthetemperatturecoefficieent(Voc)equals‐0.31%perdegrees Celsius. modulewhenthevoltage eacrossthesolarmoduleiszero ISC:Thecurrrentthroughthesolarm like,whenth hesolarmod duleisshort circuited.FromthedatasheetISCe quals7.44A A.[156] Expected teemperature range: the lowest and d highest te emperature on the arrray; it is approximateedtobefrom mzerodegreeesCelsiusto o75degreessCelsius.[1577]

Figure164 4,Enphasemoodulecompattibilityonline etool[157]

Thro ough enterin ng the five parameters p i n Enphase online o tool; it i was foundd that all the e models (M215, M250 and C250) C are co ompatible w with the Canaadian solar module “moodel Quartecch CS6V‐ outputofM2 250andC25 0ishigherth hanM215m microinverterr(thehigherrnumber 225M”.Thepowero 15 micro producees the greatter power output). Throough checking the speccifications shheet of M21 inverters; the input DC power is from 190 W to 270 W W (@STC) and the out poower is 225 W. The DC from thee Canadian module m (@STTC) is 225 W W which is within w the in put DC rangge of this output D micro in nverter mod del. Both, M250 M and CC250 micro inverters are suitable but they are more expensivve.Therefore,M215modelisselecteedforBahraainPolytechn nicsolarparkkingproject.[157] 3.17.2 E Enphase con nnecters and Canadian module con nnecter:

Figure165 5,PV2bconneecterandMC C4connecter[[158][159]

The figure abovve shows the e connecterrs provided with w Enphasse micro invverters and Canadian C ecters, and Canadian modules usse PV2b module.. Emphases micro inverters use MC4 conne connecters.ActuallyyIdidnotfin ndanyvariattionbetween nthetwotypesexcepttthatPV2bco onnecters arefulliinsulated.If theconnecttersdonotffittogether, themodulesuppliercannbeaskedto ochange the connecters. If not n possible we can chaange the con nnecters manually. Channging the co onnecters manually is not expensive (about 1 dollarr per module) compare ed to the coost of modules and inverters;howeveritistimecon nsumingproccess(12744cconnecterne eedtobech anged).[158][159]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page14 49of202 

Sum mmaryofthe eEnphaseM215microinvvertersspeciifications(fro omdatasheeet–SeeappendixF):

The warranty of Enphase M21 M micro i nverters is 25 2 years. Th his micro invverter mode el do not uctor(GEC)bbecausethegroundequiipmentisproovidedinthe eEngage require GroundElecctrodeCondu Cable(thegroundfaultprotection(GFP)is integratedintothemicroinverter)..Themicro inverters mmunication ns Gateway TM, and Enlighten Enphase’s can be monitored using the Envoy Com are through connecting the inverterrs by monitooring tool (a a display monitorring and anaalysis softwa whichisanextracom mponent)an ndusingEtheernetcablesorwirelesscconnection. [160] phaseM215 isfrom190 Wto270W Wandtheouutputpoweris225W TheeinputpoweeroftheEnp (STC). Th he maximum m number off modules thhat are conn nected in on ne string is 117; the inverrter peak efficienccyis96.5%.Theoperatin ngtemperattureisfrom‐‐40 to65 ;thedimennsionsofthe einverter are0.1663m(Width)),0.173m(H Height)and00.025m(Dep pth).Themiccroinverter weightis1.6 6Kg,and it does n not include a cooling fan. This inverrter is comp patible with solar s modulees that conssist of 60 cells.ThepriceofEn nphaseM215 5microinverrteris118$(0.52dollarperwatt).[1161] ordingtoinsstallationma anualofEnpphaseM215 microinvertters;theinpputconnecte erisMC4 Acco andtheoutputconn necteriscalle eddropconnnectersassh hownbelow:

Figurre166,moduleconnectedtoamicroin nvertertoane engagecable [162]

Asshownabovee,themoduleDCoutputtshouldbeccompatiblew withMC4inpputofmicroinverter. Theoutp putofthem microinvertershouldbe connectedtoanengage ecable.This cableshould dcontain dropcon nnectertoco onnectthem microinverteertothecableandfinallyytothejuncttionbox.The eengage cable is not supplieed with the e inverter annd need to be purchassed separateely. As expllained in nents section n the modules need too be conneccted by grou und cables tthat pass th hrough a compon combineerboxtotheeground.The epicturebellowtheshap peofdropco onnecter:

Figure167,stringengaagecabledropconnecter[163][164]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page15 50of202 3.17.3 M Micro invertters installe ed on the paarking struccture:

Figure1 168,threemiicroinvertersmountedonapurlin

The picture abo ove shows three t inverteers installed d in the mid ddle under tthree solar modules whereth heinverterswillbemountedonthe purlinthencconnectedto osolarmoduulescables. 3.17.4 N Number of sstrings:

Figure e169,twocarrparkscovere edbyninemo odules

The picture abo ove shows tw wo car parkss covered byy nine modu ules. Each paark consists of three arrays, and each arrray has thrree moduless (per park). Nine micro converterrs can be co onnected together per park; this t method d uses more inverter strrings (one sttring per parrk), and hen nce using quiremoretterminalintthecombine erbox(more ecostly).Theemicroinverterscan morecaablesandreq be conn nected per array instead of per parkk. This allows connecting g 17 micro i nverts togetther, and hencereeducingthenumberofm microinverteersstrings,usinglesscab blesandless numberoftterminals in the ccombiner bo ox. To calcula ate the num mber of strin ngs for the whole w solar parking pro oject; the followingformulassshouldbeuse ed: Number of m modules per array A or B B or C

number of park ks in the desirred row

Numbeer of required d strings perr parking row w A or B or C Number of required strings per pa arking row

3

The num mber of moduules per array y

Number of required strings per parking rrow A or B or C

17 3

The table below w calculatess the total nnumber of micro m invertter strings rrequired for Bahrain hnicsolarparkingprojectt: Polytech

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page15 51of202

Parking row

Table7 72,calculatingtotalnumbeerofstringsp perrowandfo ortheentire project Numberof Totalnnumber Numberof Stringgsnumber correctedstring modulep per ofstriingsper parks ÷17 number array roow

Laststring consistof

Row1 38 38×3=114 6.71 7 221 5modules Row2 48 48×3=14 44 88.47 9 227 9modules Row3 48 48×3=14 44 88.47 9 227 9modules Row4 56 56×3=16 68 99.88 10 330 2modules Row5 56 56×3=16 68 99.88 10 330 2modules Row6 61 61×3=18 83 110.76 11 333 4modules Row7 61 61×3=18 83 110.76 11 333 4modules Row8 57 57×3=17 71 110.06 11 333 16modules Row9 54 54×3=16 62 99.53 10 330 8modules Row10 47 47×3=14 41 88.29 9 227 12modules Row11 44 44×3=13 32 7.76 8 224 4modules Row12 35 35×3=10 05 6.18 7 221 14modules Row13 32 32×3=96 5.65 6 118 6modules Row14 27 27×3=8 81 44.76 5 115 4modules Row15 24 24×3=7 72 44.24 5 115 13modules Row16 20 20×3=6 60 3.53 4 112 8modules Total 708parks ‐ ‐ ‐ 3396 ‐ The table abovee shows the number of strings per parking row. It is obviouus that each h parking row req quires different numberr of micro i nverter strin ngs. And he ence each pparking row requires differentsizecombinerboxes.R Row6,7andd8requiretthebiggestssizecombineerbox;theccombiner 33terminalssfortheinveertersstringss.Eachstring gcontains177microinvertersand boxshouldcontain3 solarmo odules.Thelaststringsco onsistoflesssthan17miccroinverterandsolarmoodule. 3.17.6 S System wirin ng: The stringcableswillbehidd deninsidep urlins;1junctionboxwillbeinstalleedonthefirsstparkof T output two t cables oof each junction box will be hidden undergroun nd; these each parking row. The junction n boxes will be combine ed together in a main junction box. The main junction box will be connectedbytheuttilityelectricalunitwhichhislocated besidebuilding34(theccableswillbehidden undergrround). 3.17.7 Initial diagram of wirin ng the system m (how the cables would be conneected):

Figure170 0,Initialdiagrramofwiringthesystem(howthecable eswouldbecconnected)

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page15 52of202 Where:  R:therown number(16rrows).  Black lines: total number of string cables per array a (A, B or o C) – will bbe hidden in nside the purlins. estructureoofthefirstpa ark).  Greenboxess:representcombinerbooxes(willbefixedonthe  Darkbluelines:undergroundcablees;theoutpu utofeachco ombinerboxx(twocabless)willbe ogetherinmaincombineerbox(MCB))usingtheseundergrounndcables. combinedto onstationis controlledb byEWA;itislocatednearrtobuilding34.  TheElectriciitydistributio ure170show ws4rowsou utof16row wsoftheparkingarea.Ro ow1consisttsof21strings(black Pictu lines)dividedequallyinthreea arrays(A,BaandC);then n,the21stringcablesw willbecombinedina nsquare).Th hesamethinngisapplied dtotheream mingrowsfroomrow2to orow16. combineerbox(green The outtput cables from the co ombiner boxxes will be installed un nderground (blue lines) to main combineerboxandfinallytoelecttricitydistribbutionstation. 3.18 Sim mple modiffication in tthe structurre:

Figure171,fiinaldesignoffthestructure e

Assshownabovee,thedirectionofthepuurlinswasch hangedinordertoinstallltheinverte ersinthe bles (the desired location witthout the need to mak e holes inside the purliins to pass modules cab wererotated d180degree es). purlinsw 3.19 Co ost analysiss: 3.19.1 C Cost of prep paring the la and (initial ccost): Thecostofprep paringthelan ndisestimattedtobe200 0,000BD;thispriceincluudesthefollo owing:  Co ostofdigginggtheground d.  Co oncrete.  Steelforreinfo orcingthefo oundation.  W Woodforprep paringfootin ngsinthedessiredshapeandsize.  An nchorboltsw withnutsand dsteelplate s.  Saandformakingthelandfflat.  Installingcableeswithanyrrequiredmatterial.  Co ontractor cost (includes, monitoringg the projectt, labor charge and, toolls and mach hines and reentingheavyequipment).  Assphalt.  Paaintingparkin nglines.  An nyothercosttslikecostoftransferrin gwaste.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page15 53of202 3.19.2 S Solar system m costs (Costs of the eleectrical com mponents) (iinitial cost)::  Pricceofmicroin nvertersandsolarmodul es(electricallcomponents): Thetablebelow wshowstotalcostoftheiinvertersand dmodules: Table7 73,totalcosto oftheinverteersandmodules(costofelectricalcompponents)

Compo onent Canadian nsolar modu ule

Model QuartechCS6V‐ 225M

Microinvverter

EnphaseM M215

Price

Requ uiredquantitty

cost 67.9 9×6372= 432,6 658.8BD 44.5 5×6372= 283,554BD 716,2 212.8BD

1 80$(67.9BD) 6372 1 18$(44.5BD)

Totalcostt  Pricceofotherelectricalcom mponentsanddrequiredse ervices: The price of sysstem wires and a accessoories, junctio on boxes, breakers, fusees, groundingg cables, installationofelectrricalcompon nents(labor charge),permitsandinspectionfeeesisestimattedtobe 15%ofthecostofeelectricalcom mponents(1007,431.92BD D). 3.19.3 P Price of the structure co omponents::  Theepriceofsteelsections(C CchannelanddIbeams): BaseedonAL‐NoohandAl‐Fo ozansteelsuuppliers;thepriceofthesteelsectionnsisestimate edbased ontheaaveragecostofthesectio onperareaaandlengthoff1meterasmentionedbbelow:

Th heaverageccostofIbeam msforarea of1meterssquareandlength1metteris2,848.3BDper meter;thecro osssectiona areaof(IbeeammodelU UB305x102 2x28)is0.000363metersquare. hecostofthiisIbeamperrmeterequaals: Th 2848.3BD p per meter 0.00363m 10.34 BD perr meter App proximately y for bea ams and coluumns

Th heaverageccostofCchannelsectionnforareaof 1metersqu uareandlenngth1meterris2,807 BD Dpermeter;;thecrossse ectionareaoof(Cchannell120C20)is0 0.000544meetersquare.Thecost offthisCchann nelsectionp permetereq uals: 280 07 BD per m meter

0.000544m

1 1.527 BD peer meter Ap pproximatelly

for purrlins

Pricceofsteelplate:

Diffeerentsizeofsteelplateswillbeuseddasshownbelow: 20 t .  Th hedimension nsofconnectionplatefoortilt5are(3 310.08 L 101.9 W  Th hedimension nsofconnectionplatefoortilt11are 314.68 L 101.9 W 20 t .  Th hedimension nsofcolumn nendplatea re 308.9 L 101.9 9 W 20 t . Baseedontheaforementione edaverageccosts;theesstimatedpricceforsteelpplatesis2800BDper meterandareaof1metersquarre;thecostoofeachsteellplateisequ ualto: 2800 BD per meterr 0.31008 8 0.1019 m 0.02 m 1.77 BD per conneection plate e tilt 5 2800 B BD per meterr 0.31468 0.1019 m 0.02 m 1.8 BD D per connecction plate tilt 11 2800 0 BD per meeter 0.3089 0.1019 9 m 0.02 2 m 1.76 BD per endd plate column

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page15 54of202 

Pricceofsteelsh heets: The estimated cost for steel sheets is 4 BD per sheet s (for sh heet 1 and 3). For shee et 2, the proximatedccostisanasssumption estimateedpriceis8BD.Thelenggthofeachssheetis4.918m;theapp basedonthethickneessofsheetss(2mm).  Pricceofsteelsh heets: BassedonManaazelshopinSSalmabad;thhecostofNut,boltandwashersize M20willbe eabout1 BDandtthecostofb boltandwash hersizeM122willbeabout0.5BD. 3.19.4 C Cost of the structure: Fromtable56(sectiion3.14);thesystemconnsistsofthe efollowingco omponents:: Table744,costofthesstructure FCp per Pricepeer Part Quantityy Length Cost compo onent Cost Totalcosst meter (Estima ation) SC(free e),P,G, 12,963.3 3988×10=3980 Column 398 3.15m 10.34BD D D(10B BDper 16,943.3B BD BD BD colum mn) 17743.8 8 17,743.8 Cro ossbeamtilt55 345 SC(free),AC,P, BD +19286.7 (3445+375)×15 4.974m m 10.34BD D G,D(15 BDper ==10800BD +10800= 19,286.7 7 beam) Cro ossbeamtilt11 375 BD BD 47,830.5B Nut,boltand N 4320+99 91 114232×1= ‐ 1BD ‐ 14,232B BD ‐ washerM20 w 2=14232 114232BD Bo oltandwasherr 122744×0.5= ‐ ‐ 0.5BD D ‐ 6,372BD D 12744 M12 6372BD 2832×2== 56664×1=5664 5664×4 = Ste eelsheet1&33 ‐ D(1BD) 28,320B BD ‐ 5664 BD BD 22656B 2832×8 = 28332×2=5664 Steelsheet2 S 2832 ‐ ‐ 4 D(2BD) 28,320B BD 226564 BD BD SC(free e),P,G, 24555.2 2 66365×2.5= Purlins 6356 2.53m 1.527BD D D(2.5B BDper 40,467.7B BD BD 115912.5BD purllin) Connectionplatee 3345×2.5= 1.77BD D ‐ 610.7BD 1,473.2B BD 345 (perpiecee) (tilt5) 862.5BD con nnectionplatee C,D,W(2.5BD 3375×2.5= 1.8BD(peer ‐ 675BD D 1,612.5B BD 375 piece) (tilt11) perpiece) 937.5BD 3998×2.5=995 1.76BD D End dplate(column) 398 ‐ 700.5BD 1,695.5B BD (perpiecee) BD Installing 25BDpe er 25×708= 708parkk ‐ ‐ 17,700B BD ‐ me echanicalparts park 117700BD Total 204,966.7 BD Wh here: –AC:anglecuut‐W:weldingg‐C:cutting. FC:fabricationcost‐SC:straightcut‐P:painting– G:galvanizingg‐D:drilling–

Thetotalcostoffthestructureisabout2205,000BD;tthepriceperrparkisabouut289.5BD. ough contacting with Al‐‐Zamil Steel Company; the t estimate ed cost for tthe structure e (design Thro option22)is19,000 BDforsinglesideparkinng(structure etype:chee etah)and1444,265BDfo ordouble sideparking(structu uretypeFalccon2).Thetootalcostoftthestructure eis163,265 BD(includingdesign, w is cheaaper than my m design structure parts and installation); the price per park is 230.6 BD which becausee Al‐Zamil Stteel design uses less m material (theyy economize e the cost oof structure through decreasiingthicknesssinpointsth hatexposetoolessstress)).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page15 55of202 3.19.5 P Project initial cost (bud dget): Table75,Prrojectinitialccost(budget) Costofp preparingthe eland Costofthestructu ure&installin ng(mechani cal) Priceeofmicroinvvertersandssolarmodulees Priceeofsystemw wires,electricccomponennts insttallation,perrmitsandinsspectionfeess CostoffBahrainPollytechnicsolarparkingsttudy Total(rrequiredbud dget) 3.19.6 M Maintenance and inspe ection costs (operation cost): Thetabllebelowsho owsmaintena ancecostpeeryear: Table76,m maintenanceccostperyear

Process

Datte 2timesper 3months DryMaintenanceandin nspection (8months peryear) 1timeper33months WetMainteenanceandin nspection (4months peryear) Totalperyear Total25years

200,000BBD 204,966.7BBD 716,212.8 BD 107,431.922BD Free 1,228,611 BD

Costperrpark

To otal

0.75B BD

0.75×708× ×8=4248BD

1BD D

1×708×4=2832BD

Projectccostafter25 years Priceofeelectricitypro oducedbythhesystem25 5years

7080BD 77080BD×25=177000BD D 1,228,611B BD+177000 BD=1,40 05,611BD 961,06 64.4BD

mparing betw ween EWA prices p and t he whole so olar system project costt is not corrrect. The Com maximum price of electricity e in n October 20016 (for ove er 500,000 units) u is 0.0228 BD. The 0.028 0 BD represen nts the average operating costs (liike wages, fuel, f mainte enance, etc.)) where the e cost of buildingg up thepow werplantis notincludedd.Thesolar energycost includestheecostofthe esystem olarsystemaandstructure earenot (powersstation)and thestructurreoftheparrks;ifthecostsoftheso included d;thecostoffelectricityp producedby yBahrainPolytechnicsola arparkingprrojectisclosetozero (accordingtohowEW WAcalculate esthecostsoofelectricityyinBahrain).. d in Bahrain B increeases by 10 % annually;; the power production capacity The electricity demand should b be doubled every decad de to cover the growth in demand. The cost off building up p a solar stationiisveryclose topriceofe electricityprroducedusin ngfossilfuel.BahrainPoolytechniccouldbuild thesolarstructure, andMinistryyofpowerccouldutilize thisstructurebyinstalliingthesolarrsystem. hangethewa ayofproduccingenergy; throughthe ecollaboratioonbetween ministry Bahrain needstoch wer and oth her organiza ations moree solar projects can be b implemeented. To conclude, c of pow dreduceCO22emissionsb by40metrictons(totalffor25years)). implemeentingthisprojectwould

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

56of202 Page15

ChapterFour–Conclusionsa andrecomm mendations: 4.1 Intrroduction: The objectives of o this proje ect were to sstudy the po otential and the developpment of re enewable ain, to desiggn a solar parking system inside Bahrain Polytechnic energy (solar energgy) in Bahra studentss parking areea, toanalyzze and selecct the type of o system with the requ ired compon nents, to determine the bestt direction and a orientattion for the e structure with the paanels, to de esign the nentsofthe structure,to ofindtheam mountofelectricityproducedbytheesystem,tocalculate compon the totaal cost of in nstalling the system andd to evaluatte the future e benefits oof implemen nting this projectfforBahrain Polytechnic andBahrainn.Allofthesseobjectivessweresucceessfullyachie evedand thefollo owingsection nsshowtheprojectmainnfindings,co onclusionsan ndrecommeendations. usion: 4.2 Maiin findings and conclu  Fivee factors can n be used to o select the solar cell type (mono crystalline, poolycrystalline e or thin film)whichtheyyareavailab bility,efficienncy,temperaaturecoefficcient,costanndlifespan..Forthis project,monocrrystallinesolarcellswereeselected;tthesecellshavethehighhestefficienccy(upto %),durablean ndavailableinthemarkeet. 20%  The solar system ms are classsified to Gridd‐tied system ms and Off‐G Grid systemss (system co onnected htheutilityaandsystem isnotconneectedwithth heutility).Theselected solarsystem misGrid‐ with tied batterylessssystem;the esystemhassmanyadvaantageslike,simplicity,hhigherefficie ency,less costtlyandfewerrmaintenancerequirem ents.  Byin nstallingGrid dtiedsystem mBahrainPoolytechniccaansellelectricityduringholidays;th hiswould solvepartofBah hrainpowerconsumptioonissues.  The mountingsystemforso olarstructurrecanbefixed(themosstcommonddesignused forsolar m which is rarely used). The selecteed structure e for this structure) or dyynamic (traccking system projectisfixedsstructure.Thisstructure wouldcoverrtheentirep park,andithhasmanyadvantages hasitissimp pler,cheaperrandrequireeslessmainttenancecom mparedtody namicstructture. such  In B Bahrain the photovoltaic arrays shoould be placed toward south (Azim muth 180°) because BahrainislocateedintheNorrthernhemissphere(forfixedstructurre).  The efficiency of o a solar mo odule mountted away fro om true south decreasees by 1.1 % for f every fivedegreesawaayfromtruesouth.  The optimum tiilt angle for solar moduules in Bahrain is 26° (ffor autmen and spring), 11° for mmer and 41 1° for winter. The manuufacturers of solar parking systems s use small tilt t angle sum (bettween0to10degrees)d duetoloadsaandstructurreheightcon nstrains.  The selectedtyp peofstructu ureisdouble slopestructture.Theselectedtiltanndazimuthanglesfor d 238.3° resspectively, and the tilt and a azimuth angles for east e side west side parks are 11° and parkksare5°and d58.3°respe ectively.  InBaahrain,them minimumheightofthepparkingstructturefromthegroundis22.2m.  Acco ording to PV VIS online calculator; thhe amount of o solar irradiance that would be collected c annually by east and wesst side parkks are 2,147 7.18 (KWh/m m^2) and 22,183.45 (KW Wh/m^2) resp pectively.  While selecting the solar module 10 facctors should d be considered which t hey are, the e module nt,nominalo operatingce lltemperatu ure,wind efficciency,poweertolerance,,temperaturrecoefficien load d,quality,durability,perfformancewaarranty,prod ductwarranttyandinitial cost.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page15 57of202 

 

 

 

The CanadianCo ompanyisth hethirdbesttsolarmodu ulesmanufaccturerinthe world(in20 014),and mpaniesinttheglobalso olarmarket;theCanadia nmodulesa aremade itis oneoftheccheapestcom n module model Quarteech CS6V‐22 25M was in cchina and asssembled in Canada. Thhe Canadian odule are 1.638 (W) × 00.826 (H). Th he power selected for thiss project; the dimensionns of this mo putandefficciencyofthissmodule(@ @STC)are22 25Wand16.63%.Thism modulewas selected outp duetoseveralreeasonsespeccially,cost,ddurabilityand ditiscompa atiblewiththheparksdimensions. The numberofssolarmodule esthatwoul dbeusedin nthisprojecttis6,372;thhetotalarea ofthese dulesis8,621.24m^2(th hetotalareaaofwestsideparksis43 347.15m^2aand4274.09 9m^2for mod easttsideparkinggrows). The wind load was w estimatted using usse ASCE (Am merican Socie ety of Civil Engineers) standard. s exposeto Baseedonthissttandardthessolarparkinggstructure(arrayconsistof9modu les)woulde 815..31 Kg of wiind load durring peak co ndition (111 1 KM/h). The e wind load was assume ed to act vertticallytoward ddownward;forthisreaasontheFOSSwasincreassed. The estimatedFFOSis3.6;th hisFOSisba sedon5ele ementswhichtheyare,tthepropertiesofthe es,geometryy,failureanalysisandthe edesiredreli ability. material,theappliedstresse ule in the desired locatioon and for keeping k a The aim of using purlins is for mountinng the modu per distance between th he modules and crossbe eams in orde er to put thee electrical parts p and prop cablesinside. The solararray ineachparkkwillbecarrriedbytwo verticalcolu umns;thisddesignprovid desmore spacceforthecarsandavoidspossibleacccidents. The maximum von misses stress actinng on each purlin is 45.2 4 Mpa (eeast side ro ows), the bined stresss acting on each crossbeam is 70 0.34 Mpa (eeast side ro ows), the maxximum comb calculatedsizeaandnumberofboltsare 20mmand6boltsandthemaximuumbucklingsstresson singlesideandd doubleside columnsaree83.5Mpaaand7.528M Mparespectivvely.Also,th helength and width of th he footing arre 0.65 m annd the thickkness is 0.32 25 m; the m mass of the footing f is approximatelyeequalto330Kg olidworks(FEEA)andcalcu ulationswere10%↑,1.99%↑and0.0 05%↓for The differences betweenSo purlinseastsideepurlins,eastsidecrosssbeamsand singlesideccolumnsresppectively.In general, worksanalysissareunderttheallowablestress. thedesignissaffewherebothcalculationnandSolidw o a photovooltaic system m is affected d by the perrformance reduction The actual enerrgy output of or. This facttor is based on seven suub factors which they arre, dust and dirt, low irrradiance, facto inveerter efficien ncy, moduless mismatch, power tolerrance, temperature coeffficient and modules degrradation. The annualenergythatwou uldbeproduucedbywesstandeastssiderowspeeryearis1.0 079GWh dbeproduce edbythesysstemintheffirstyear and 1.026GWh respectivelyy;thetotalppowerwould 77MWperdday(average e). is2.107GWHpeeryearor5.7 n,thesystem menergyouttputdecreassesovertimee.After25yyears,the Dueetomodulesdegradation 7GWhonly((peryear). systemwouldprroduce1.737 e co onsumed by y Bahrain po olytechnic fro om July to O October is 204,724.8 The estimated electricity h, 168,710.4 4 KWh, 2164 428.4 KWh aand 178,237.8 KWh resp pectively. In July, 110.3 % of the KWh elecctricitywillbecoveredbythesolarpparkingsyste em,inAugusst123.8%,iinSeptembe er86.1% and93%inOcto ober.Duringgsummerhooliday,theso olarparkingssystemwoulldproducee electricity he solar parrking system m would covver about 911.4 % of the e energy morre than the required; th conssumedbyBaahrainpolyte echnicinthefirstyear.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page15 58of202  

The universities areclassifie edasanon‐ddomesticsecctor(comme ercialsector));theelectriccitytariff fortthissectoris0.02BDperrKWh(Octobber2016)forlessthan500,000KWh . The priceofelecctricitythatw wouldbepr oducedinth hefirstyearis42,134.8BBDand961,0 064.4BD after25years (ttotal).Since,thepriceoffelectricitycconsumedbyytheuniverssityinthefirstyearis 46,0086.084 BD and 1,152,152.1BD aftter 25 yearrs (total); th he solar parrking projecct would decrreasetheeleectricitybillssby83.4% (average25 5 years).Theaveragepriice ofelectricity bills with houtsolarpaarkingsystem mis3,840.511BD.Sincetheaveragep priceofelecttricitybillsw withsolar parkkingproject is329.28BD Dinthefirst yearand63 36.96for25yyears;duringgthisperiod dBahrain Polyytechnicwou uldpay16.6%ofthebillss(average25 5years). Enphase M215 micro invertters were seelected for this t project; these inverrters are compatible h the selecteed Canadian module andd have self‐ggrounding syystem. The w warranty of Enphase with M2115microinveertersis25yyears.Theprriceoftheseinvertersisa about44BD Dperinverterr. Bahrain Polytecchnic solar structure woould require 398 column ns, 345 crosssbeams (tiltt 5), 375 2nuts,bolts andwasherrs(sizeM20)),12,744bolltsandwash hers(size crosssbeams(tilt11),14,232 M122),5,664steeelsheets1& &2,2,832stteelsheet3,,6,356purlins,345Connnectionplate(tilt5), 375 Connection plate(tilt11 1)and398EEndplates.TThetotalcosstofthestruuctureinclud dingprice 05,000 BD; tthe price pe er park is of stteel, fabrication and insstalling mechhanical partss is about 20 about289.5BD.Thepricep perparkforD Design2(byal‐Zamilstee elcompany) is230.6BD. o this proje ect is 1,405,,611 BD (25 5 years); the e total elect ricity that would w be The total cost of duced by this project iss 48,053,2199.10 KWh (2 25 years). Th he cost of eelectricity using solar prod parkking system is 0.029 BD per KWh. SSince the cost of electriccity in Bahraain is 0.028 BD/KWh (opeerations costts “fuel and wages”). Thhe price of solar s energyy is cheaper than electriicity that prod ducedusingfossilfuel(in ncludingopeerationcostsandcostofbuildingupaapowerplan nt). ThissprojecthasmanybenefitsforBahrrain.First,he elpingBahraintofurtherrapplythep principles ent through providing renewable and envirronmentally friendly of sustainable developme alternative for generating electricity; tthis supportt Bahrain sttrategic planns in which Bahrain ounced thatt 5 % of the total energgy would be produced using u solar eenergy in 2020. Also, anno implementingth hisprojectw wouldimpro vepubliche ealthandthe elocalenvirronmentby reducing air p pollutants especially e CO O2 emission s (about 40 0 metric ton ns “total 25 years”), an nd hence minimizingglobalwarming. Furthermo re,meetthe eincreasedd demandon electricityin nBahrain oughutilizinggexistingparkingareasttoproduceffurtherpowe er.Finally,assaconseque encethat thro the electricityco ostiswaitinggtobeincre asedveryso oonandtheccontinuousddecreaseoftthecosts photovoltaic devices;thissprojectproovidesanaltternativeforrgeneratingelectricityw withvery ofp com mpetitivepricceforBahrainsociety,anndwouldsavvemoneyesp peciallyforloongtermpla ans.

4.3 Reccommendattions for futture related d activitiess and impro ovements:  Itisrecommend dedtouseAl‐Zamilsteel designorto ooptimizethestructure. Thestructurrecanbe her optimizeed by reduciing the amoount of steel used and by b increasingg the strengtth of the furth structuresuchas,addingakkneebracinggtoincreaseresistanceto obending. olar irradiancce experimeentally. In orrder to check that the ssystem produces the  Meaasure the so expeected electricity or to optimize o thee design; it is i recommended to purrchase 5 to 10 solar mod dules or purcchase a Pyra anometer. TThen, use the ese devices to measure the total am mount of solarirradianceyearlyindiffferenttiltanndazimuthangles. elect the  Desiign the electtrical circuits by a quali fied electrical engineer. The engineeer should se diam meteroftheACcables,d designthea rrangement ofthecable es(makesurrethatthem minimum

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page15 59of202

 

  

lenggthofcablesisused,avo oidwirestangglingandmaakesurethatthevoltageeandcurren ntineach strin ng are within safe levelss). The engi neer should d select the optimum tyype of comb biner box thro ough specifyying the num mber of term minals and size of fuse es and desiggning the grounding systemcorrectlyy.Also,deterrminethenuumberandlo ocationofAC Cbreakers,aandaddamo onitoring dulesperform mance.Allth heelectricalcomponentssneedtobe checked systemtoevaluaatethemod by eelectricity an nd water autthority (EWA A) because any a fault in wiring the ssystem could d lead to fire. E department to redesign n or optimize the founddation through using Ask UOB Civil Engineering material. reinforcementm ow mainten nance schedule to keepp the modu ules clean and a to mainntain efficiency; the Follo mod dulesshouldbecleaned onceperm monthfordryyclean,andonceperthhreemonthssforwet clean.[27] Prep pareanadvaancedcosta analysisbya businessstudent/tutor tocalculateetherealco ostofthe project(findtheecostofestim matedcompponents/servvices),andto ominimizethhecostsifpo ossible. Expaandthesolaarparkingprojecttoincl udeleftside eandrightssideofthesttudentsparkkingarea (P2)andthestafffsparkingarea(P1). Itis recommend dedtoconta actwithelecctricityandw waterauthorrity(EWA)o rconducta research ntation)thatmustbefolllowedtoinsstallsolar inordertofind therulesandprocedurees(documen onnectsolar systemwith hEWAgridsssafelyandleggally. systemsinBahraainandtoco anceswithhhighefficienccyandpowerrsavingsapppliances. Replacelowefficiencyapplia

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 60of202

B Bibliograph hy [1]

"R RenewableandSustainable eEnergyRevieews,"Environm mentalimpactsofutility‐sccalesolarenerrgy,vol. 299,pp.766‐779 9,2014.

[2]

I.J.Bachellerie,,RenewableE Energyinthe GCCCountrie es(Resources, Potential,an dProspects),Gulf ReesearchCenteer,2012.

[3]

YingliSolar,"ATIMELINEOFTheHistoryoofSolar,"YingliSolar,2015.[Online].Avaailable: nglisolar.com//me/solar‐bassics/#timeline e_section.[Acccessed19Octtober2015]. htttp://www.yin

[4]

DiigitalPaymentTechnologie es,"SolarEnerrgyandthePaarkingIndustry(Whitepapeer),"academia,n.d.. [O Online].Availaable: htttps://www.academia.edu//5949718/Sol ar_Energy_an nd_the_Parkin ng_Industry_W White_Paper. [A Accessed11D December2015].

[5]

su unandlife,"W WorldLargestSSolarParking ProjectintheKingdomofS SaudiArabia,aatHQofSaud diArabian OilCompany(SSaudiAramco)),"sunandlife,,2015.[Online].Available:http://www.ssunandlife.com/index‐ Accessed2Occtober2015]. 4.php?id=1&p==5&search=.[A

[6]

olutions,"petrrasolar,2015..[Online].Ava ailable: peetrasolar,"PettraCarportSo htttp://www.peetrasolar.com//solutions/pettra‐carport‐so olutions/.[Acccessed2Octoober2015].

[7]

M M.Boxwell,"so olarirradiance,"solarelectrricityhandboo ok,2009‐2015 5.[Online].Avvailable: htttp://www.solarelectricityh handbook.com m/solar‐irradiaance.html.[Acccessed12Occtober2015].

[8]

N.W.Alnasera,,R.Flanagana a,W.E.Alnaseer,"Potentialofmaking—O Overtosustainnablebuildinggsinthe hrain,"science edirect,UK,2 007. KingdomofBah

[9]

e].Available: caarportstructurres,"SolarCarrports,"carpoortstructures,2015.[Online htttp://www.carportstructure es.com/solar‐‐carports/.[Acccessed2October2015].

[10] "d differenttypessofcarportsyystems,"solarrcarportsinc,n n.d..[Online]. Available: htttp://solarcarp portsinc.com//2011/08/diffferent‐types‐o of‐carport‐systtems.[Accesssed11December 20015]. [11] D..S.a.U.S.R.E.Hanitsch,"ShadingEffecctsonOutputPowerofGrid dConnectedPPhotovoltaicG Generator Syystems,"cder,,2001.[Online].Available: http://www.ccder.dz/down nload/upec‐122.pdf.[Accessed2015 Deecember11]. [12] "ssolarpaneleffficiency,"pure eenergies,n.dd..[Online].Avvailable:http://pureenergiees.com/us/ho ow‐solar‐ works/solar‐panel‐efficiencyy/.[Accessed111December 2015]. ain’srenewabbleenergyplans,"oxfordbu usinessgroup, 23Septembe er2013. [13] oxxfordbusinesssgroup,"Bahra [O Online].Availaable:http://www.oxfordbu sinessgroup.ccom/news/bahrain’s‐renew wable‐energy‐plans. [A Accessed16m may2015]. [14] so olargcc,"BahrainSolarSolarGCC,"solarggcc,15April2 2015.[Online].Available: htttp://www.solargcc.com/ba ahrain‐solar/. [Accessed16 6may2015]. [15] L.El‐KatiriandM.Husain,PrrospectsforReenewableEne ergyinGCCSttates,OxfordIInstituteforE Energy Sttudies,2014. [16] M M.Darwishand dR.Mohtar,P PrimeEnergy Challengesfo orOperatingPowerPlantsinntheGCC,Do oha, Qatar:SciRes,2 2013. derationsford deploymentoffsolarphotovvoltaicsin [17] S.Griffiths,"EnergyStrategyyReviews,"Strrategicconsid heMiddleEasttandNorthAffrica,p.7,20113. th [18] J.S.ArmendárizandA.Gastlly,ChallengessFacingGridIntegrationofRenewableEnnergyintheG GCC habi,UAE:GullfResearchCeenter,2013. Reegion,AbuDh [19] Cu urrentStatusofRenewable eEnergiesinttheMiddleEast– NorthAfrricanRegion,LLeadAuthora and

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 61of202 ReesearchDirecttor:,2007. [20] IR RENASecretarriat,renewableenergyinthhegulf:factsaandfigures,AbuDhabi,UniitedArabEmirates: IR RENASecretarriat,2013. [21] V..Fotuhi,"MEN NASolarOutlo ook,"mesia,JJanuary2015.[Online].Ava ailable:http:///www.mesia.ccom/wp‐ co ontent/upload ds/Mesia‐Rev3‐5.pdf.[Acceessed19Septe ember2015]. [22] Y.Chu,ReviewandComparissonofDiffereentSolarEnerggyTechnologiies,GlobalEneergyNetworkk nstitute,2011.. In nviroshop,"TyypesofSolarP Panels,"envirroshop,2012.[Online].Available: [23] en htttps://www.enviroshop.com m.au/info/36..[Accessed16 6may2015]. [24] ReedarcElectron nics,"HOWDO OSOLARPAN ELSWORK?,"RedarcElectrronics,2015.[[Online].Available: htttp://www.red darc.com.au/solar/about/ssolarpanels/.[[Accessed27September20015]. [25] so olarcraft,"Com mmercialSolarPower– How witWorks,"ssolarcraft,201 15.[Online].A Available: htttp://solarcrafft.com/comm mercial‐solar‐ppower‐how‐it‐works/.[Acce essed27Septeember2015]. [26] J.Toothmanan ndS.Aldous,""HowSolarCeells Work,"howstuffworks,2015.[Onlinee].Available: ergy/solar‐cell2.htm.[Accesssed27September htttp://science.howstuffworkks.com/enviroonmental/ene 20015]. [27] sp pecmat,"SolarcellsHowth heywork?,"sppecmat,2015..[Online].Ava ailable: htttp://specmatt.com/Overvie ew%20of%20SSolar%20Cellss.html.[Accessed27Septem mber2015]. [28] hyyperphysics,""P‐NJunction,"hyperphysiccs,n.d..[Onlin ne].Available:http://hyperrphysics.phy‐ asstr.gsu.edu/hb base/solids/pnjun.html.[Acccessed27Se eptember2015]. [29] R..Mayfield,PhotovoltaicDe esign&InstallaationforDum mmies,Canada a:WileyPubliishing,2010. [30] leonics,"EnergyyConservatio onProductsFA AQs,"leonics,2009‐2013.[Online].Avail able: onics.com/sup pport/faq/ecpp_en.php.[Accessed29Sep ptember20155]. htttp://www.leo [31] so olar‐facts‐and‐advice,"cell‐‐to‐array,"sol ar‐facts‐and‐aadvice,n.d..[O Online].Availaable: htttp://www.solar‐facts‐and‐‐advice.com/im mages/cell‐to o‐array.jpg.[Accessed29Seeptember201 15]. [32] En ndeconEngineeering,"AGUIDETOPHOTO OVOLTAIC(PV V)SYSTEMDESIGNANDINSSTALLATION,""14June 20001.[Online].Available:file e:///C:/Users//Ya7ya/Deskto op/poly/SEM1 10/9‐9/2001‐009‐04_500‐01 1‐ 0220%20very%2 20important.P PDF.[Accessedd29Septemb ber2015]. [33] M M.A.Maehlum m,"WhichSola arPanelType isBest?Mono‐ vs.Polycrysstallinevs.Th inFilm," en nergyinformattive,12nay2015.[Online]..Available:htttp://energyin nformative.orgg/best‐solar‐p panel‐ m monocrystallinee‐polycrystalline‐thin‐film//.[Accessed16 6may2015]. [34] R..Degunther,SSolarPowerYourHomeforrDummies,2n ndEd(ISBN‐ 0470596783) 0 ed.,Indiana: wiley pu ublishing,201 10. [35] so olarchoice,"W Whichsolarpaneltypebest suitsyourneeds– monocrrystalline,polyycrystallineorr am morphousthin nfilm?,"solarrchoice,29Jannuary2009.[O Online].Available: htttp://www.solarchoice.net.au/blog/whicch‐solar‐panel‐type‐best‐su uits‐your‐needds‐monocrystalline‐ po olycrystalline‐‐or‐amorphou us‐thin‐film/.[[Accessed16may2015]. [36] PaalauWorksho op,"DesignofGridConnecttPVSystems,""irena,10April2014.[Onliine].Available e: htttps://www.irrena.org/Docu umentDownlooads/events/2 2013/March/P Palau/3_Desiggn_of_Grid_Co onnect_P V..pdf.[Accesseed3October2 2015]. [37] alternativeeneergyhomecossmiccorridor, "residentialssolarsystem,"alternativeeenergyhomeccosmic orridor,n.d..[Online].Available:http://aalternative‐energy‐home.co osmic‐ co co orridor.com/im mages/residential‐solar‐sysstem_gtimg.jp pg.[Accessed29Septembeer2015]. [38] zo oltenergy,"TeechnicalAspeccts,"zoltenerggy,n.d..[Onlin ne].Available:: htttp://faq.zolteenergy.co/technical/.[Acceessed29Septe ember2015].

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 62of202 [39] th hesolarplanneer,"GridtiePV V,"thesolarplaanner,n.d..[O Online].Availa able: htttp://www.theesolarplannerr.com/imagess/grid_tie_pv_ _diagram.jpg.[Accessed29September2 2015]. [40] aladdinsolar,"P PV(Photovolttaic*)System ms,"aladdinsolar,2008.[On nline].Availab le: m/pvsystems..html.[Accesssed29Septem mber2015]. htttp://www.alaaddinsolar.com [41] so olarbuzz,"Typ pesofSolarEn nergySystemss,"solarbuzz,2 2015.[Online].Available: htttp://www.solarbuzz.com/ggoing‐solar/ussing/types.[A Accessed29Se eptember20115]. [42] allsolarelectric,,"solar‐equipm ment,"allsolaarelectric,201 15.[Online].Available: earn/solar‐equuipment.[Acccessed25Novvember2015].. htttp://allsolareelectric.net/Le [43] electrical‐engin neering‐portall,"BasicsofLooadCenters,"2015.[Online e].Available:hhttp://electriccal‐ ngineering‐po ortal.com/dow wnload‐centerr/books‐and‐gguides/siemen ns‐basics‐of‐e nergy/basics‐‐of‐load‐ en ceenters.[Accesssed29Septem mber2015]. [44] th hesolarplanneer,"Step‐By‐SttepGuidetoG GoingSolar,"tthesolarplanner,2012‐20144.[Online].Avvailable: htttp://www.theesolarplannerr.com/steps_ppage8.html.[A Accessed25N November20115]. [45] th hesolarplanneer,"Photovolta aicTutorial:B BalanceofSysttem(BOS),"th hesolarplanneer,2012‐2015 5. [O Online].Availaable:http://www.thesolarpplanner.com/b balance_of_sy ystem2.html. [Accessed24 No ovember2015]. [46] A..MillerandB..Lumby,"UtilityScaleSolarrPowerPlantts,"InternationalFinanceCoorporation(IFFC), Feebruary2012.[Online].Ava ailable: htttps://www2.unece.org/wiki/download//attachments//25267247/SO OLAR%2BGUID DE%2BBOOK.pdf?api= v22.[Accessed3 3October2015]. [47] fro onius,"DC‐JunctionBoxFro oniusIG15/200/30,"froniuss,n.d..[Online e].Available: htttp://www.fro onius.com/cpss/rde/xchg/froonius_internaational/hs.xsl//83_17025_EN NG_HTML.htm m#.VlGSjn YrrKUl.[Accesseed24Novemb ber2015]. [48] th hesolarplanneer,"Combinerbox,"thesolaarplanner,n.d..[Online].Avvailable: htttp://www.theesolarplannerr.com/imagess/combiner_box.jpg.[Accesssed24Novem mber2015]. [49] sm ma,"SUNNYB BOY240‐US,"ssma,n.d..[Onnline].Availab ble: htttp://www.sm ma.de/en/prod ducts/solarinvverters/sunnyy‐boy‐240‐us.h html#Overview w‐92256.[Accessed25 No ovember2015]. [50] sm ma,"sunnybo oy240,"SMASolarTechnollogyAG,n.d..[Online].Available: htttp://www.sm ma.de/en/prod ducts/solarinvverters/sunnyy‐boy‐240.htm ml#FAQ‐1026990.[Accessed24 No ovember2015]. [51] an napode,"Enph hasesM215,"anapode,20 15.[Online].A Available: htttps://www.anapode.com//images/produuct_images/K K7000P/Enpha aseM215.jpg. [Accessed24 No ovember2015]. [52] ginverter,"Strin nginverters," ginverter,n.dd..[Online].A Available: nverter.com/U UpLoadFiles/220150423/201 15042314510900.gif.[Acceessed24Nove ember htttp://www.gin 20015]. [53] Jfyytech,"Centrralinventers,""Jfytech,n.d...[Online].Available:http:///www.jfy‐ teech.com/imaggeRepository/74806ef5‐cf577‐4e03‐9902‐‐a5c7e319ab4 45.jpg.[Accesssed24Novem mber 20015]. [54] A..M.Maehlum m,"Micro‐Inve ertersvs.CenttralInverters,"energyinform mative,12Se ptember2014 4. [O Online].Availaable:http://en nergyinformattive.org/are‐ssolar‐micro‐invverters‐betterr‐than‐central‐ inverters/.[Acccessed7Dece ember2015]. erterSystem, "siemens,n.d d..[Online].Available: [55] sieemens,"siemensMicroinve htttps://www.downloads.siem mens.com/doownload‐ ceenter/Downlo oad.aspx?pos= =download&fcct=getasset&iid1=BTLV_406 630.[Accessedd24November2015].

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 63of202 [56] m maywahcn,"W Whydopeople useonemicrro‐inverterpersolarpan,"m maywahcn,20010‐2014.[On nline]. Avvailable:http:://www.mayw wahcn.com/EN N/EN_read.ph hp?tid=1&art_ _id=46.[Accesssed25November 20015]. [57] ab bb,"FAQs‐MICRO,"abb,n.d..[Online].A Available:http://new.abb.ccom/power‐cconverters‐ inverters/solar//micro/micro//faqs.[Accesssed25Novem mber2015]. Wikipedia,"Sollarirradiance,,"Wikipedia, 22015.[Online].Available:h https://en.Wikkipedia [58] W .o org/wiki/Solar__irradiance.[A Accessed10O October2015]. [59] nrrel,"ChanginggSystemParameters,"nrel,,n.d..[Online e].Available: htttp://rredc.nrel.gov/solar/ccalculators/pvvwatts/version n1/change.html.[Accessedd16may2015 5]. [60] pvveducation,"A AzimuthAngle e,"pveducatioon,n.d..[Online].Available e: htttp://www.pvveducation.orgg/pvcdrom/prroperties‐of‐sunlight/azimu uth‐angle.[Acccessed16ma ay2015]. [61] pvveducation,"aazimuth‐angle e,"pveducatioon,n.d..[Online].Available: htttp://www.pvveducation.orgg/pvcdrom/prroperties‐of‐sunlight/azimu uth‐angle.[Acccessed10October 20015]. [62] W Wikipedia,"NorthernHemisphere,"Wikippedia,2015.[[Online].Available:http://aar.Wikipedia .o org/wiki/%D9% %86%D8%B5% %D9%81_%D88%A7%D9%84 4%D8%A3%D8 8%B1%D8%B66_%D8%A7%D D9%84% D88%B4%D9%85 5%D8%A7%D9%84%D9%8A A#/media/File e:Hemisferio_ _Norte.png.[A Accessed16m may 20015]. [63] M M.Boxwell,SollarelectricityHandbook:a simplepracticcalguidetoso olarenergy‐ddesigningandinstalling ph hotovoltaicso olarelectricsyystems,UniteddKingdom:GreenStreamP Publishing,20013. [64] .N N.Strobel,"Seeasons,"astro onomynotes,112June2010..[Online].Ava ailable: htttp://www.asttronomynotes.com/nakedeeye/s10.htm.[Accessed10 October20155]. [65] LyynnE.Newmaan,"InfluencesonSolarRaddiationReachingtheEarth'sSurface,"gcccaz,18June2 2007. [O Online].Availaable:http://web.gccaz.edu//~lnewman/gph111/topic_ _units/Earth_SSun/Earth_Sun2.html. [A Accessed10O October2015]. [66] pvveducation,"d declinationan ngle,"pveducaation,n.d..[O Online].Available: htttp://www.pvveducation.orgg/pvcdrom/prroperties‐of‐sunlight/declin nation‐angle. [Accessed10October 20015]. [67] ides‐edu,"SolarEnergyandSolarRadiatioon,"ides‐edu, n.d..[Online]].Available:htttp://www.ides‐ ed du.eu/wp‐con ntent/uploadss/2013/04/3‐SSolar‐Energy‐aand‐Solar‐Rad diation.pdf.[A Accessed10October 20015]. [68] teechtarget,"lattitude‐and‐lon ngitude,"techhtarget,n.d..[Online].Available: htttp://whatis.teechtarget.com m/definition/l atitude‐and‐longitude.[Accessed10Octtober2015]. [69] saatsig,"ExplanaationofLatitu udeandLongittude,"satsig,30July2015.[Online]. Avaailable: htttp://www.sattsig.net/lat_lo ong.htm.[Acccessed10Octo ober2015]. [70] pvveducation,"eelevation‐angle,"pveducattion,n.d..[Online].Available: htttp://www.pvveducation.orgg/pvcdrom/prroperties‐of‐sunlight/elevation‐angle.[A Accessed10O October 20015]. [71] so olartopo,"DayyLengthCalcu ulator,"solarttopo,n.d..[On nline].Available: htttp://www.solartopo.com/daylength.htm m.[Accessed11October20 015]. [72] eu urope‐sola,"EEurope‐Solar.d de,PhotovoltaaicWholesale eandTrading,SolarSystem mEngineering,"europe‐ so ola,2015.[Online].Availablle:https://ww ww.europe‐ so olar.de/catalog/index.php?main_page=ppage&id=21&cchapter=0.[Accessed16m ay2015]. [73] globalspec,"Tiltangle,"globalspec,n.d..[[Online].Availlable: htttp://cr4.globalspec.com/PostImages/2001009/SolarPV VTilt_D7DD06 61C‐DDCE‐D477A‐

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 64of202 9C C3F1880BF4D D95FA.jpg.[AccessedOctobber 2015]. [74] "P PhotovoltaicG GeographicalIInformationSSystem,"jrc,n.d..[Online].A Available: htttp://re.jrc.ec.europa.eu/pvvgis/apps4/pvvest.php?langg=en&map=affrica.[Accesseed12Octoberr2015]. [75] on nyxsolar,"Pho otovoltiacestiimation,"onyyxsolar,n.d..[O Online].Availa able: htttp://www.on nyxsolar.com/smarttools/inndexen.php.[A Accessed12O October2015]]. [76] nrrel,"pvwatts,""nrel,2015.[Online].Availlable:http://p pvwatts.nrel.g gov/pvwatts.pphp.[Accessed d12 October2015]. MinistryofMunicipalities&AgricultureU rbanPlanninggAffairs,"GuidelinesforthheDesignofO Off‐Street [77] M CaarParkingFaccilities,"MinistryofMunicippalities&AgriicultureUrban nPlanningAfffairs,n.d..[On nline]. Avvailable:http:://websrv.municipality.govv.bh/ppd/doc//study_carparrk.pdf.[Accesssed222Octob ber 20015]. [78] en nergysage,"Evvaluatingsola arpanelqualittyforyourhomeorcomme ercialsolarinsstallation,"en nergysage, 20009‐2015.[On nline].Availab ble:https://ww ww.energysagge.com/solar//buyers‐guidee/evaluating‐solar‐ paanel‐quality.[[Accessed17O October20155]. [79] arrabsolarenerggy,"Solarpane els,"arabsolarrenergy,n.d..[Online].Available: htttp://www.araabsolarenergyy.com/2014/112/solar‐pane els_29.html.[A Accessed17O October2015]. [80] IH HS,"Calculatin ngWindResisttance,"globallspec,2015.[O Online].Availa able: htttp://cr4.globalspec.com/th hread/24760##newcommen nts.[Accessed19October22015]. [81] no ordenson,"W WindLoadProvvisions,"nordeenson,n.d..[O Online].Availa able: htttp://www.no ordenson.com m/library/imagges/%7B56C63 34CC‐448A‐4A A8A‐A559‐AD228BA3793E3% %7D.pdf. [A Accessed19O October2015]. [82] JaamesM.GereandBarryJ.G Goodno,MechhanicsofMatterials(SEVENTHEDITION), Unitedstatess: CeengageLearniing[ISBN‐10:0‐534‐55397‐‐4],2009. [83] W Wikipedia,"Ulttimatetensilestrength(UTSS),"Wikipediaa,4Novembe er2015.[Onlinne].Available: htttps://en.Wikiipedia.org/wiki/Ultimate_ttensile_strenggth.[Accessed d13Novembeer2015]. [84] un niversityofmaryland,"intrroductiontoaaxiallyloadedcompressionmembers,"a ssakkaf,n.d..[Online]. Avvailable:http:://www.assakkkaf.com/courrses/ence355//lectures/partt2/chapter5c..pdf.[Accesse ed13 No ovember2015]. [85] Drr.DawoodS.A Atrushi,"Bend dingandsheaarstress,"slideshare,Decem mber 2014.[O Online].Availa able: htttp://www.slid deshare.net/m msheer/lessonn‐06‐shearingg‐stresses‐436 610041?next__slideshow=1. [A Accessed13November201 15]. [86] A..PytelandJ.K Kiusalaas,MechanicsofMaaterials(Secon ndEdition),UnitedStates:CCengageLearning [ISSBN‐13:978‐0 0‐495‐66775‐9 9],2010. [87] "C Chapter5StreessesinBeam (BasicTopicss),"nthu,n.d..[Online].Ava ailable: htttp://ocw.nthu.edu.tw/ocw w/upload/8/2554/Chapter_5 5‐98.pdf.[Acce essed13Noveember2015].. [88] en ngineersedge,,"IdealPinned dColumnBuccklingCalculattionandEquation‐ EngineeersEdge," en ngineersedge,,2000‐2015.[[Online].Avai lable: htttp://www.en ngineersedge.ccom/column__buckling/colu umn_ideal.htm m.[Accessed 13Novemberr2015]. [89] ro oymech,"Beam msFormulae,"roymech,6 June2011.[O Online].Availa able: htttp://www.royymech.co.uk//Useful_Tablees/Form/Stress_Strain.html.[Accessed133November2 2015]. [90] Zaamilsteel,"Teechnicalmanu ual,"inTechniicalmanual, Al‐Dammam,Z A Zamilsteel,19999,p.469. [91] ZaamilSteel,"DESIGNMANUAL,"inZAMIILSTEELCOM MPANYLIMITED(PRE‐ ENGINEER REDBU ILLDINGSDIVISION),AL‐Damam,Za milSteel,n.d..,p.282. [92] W Wikipedia,"Seccondmomenttofarea,"Wikkipedia,13October 2015.[Online].Avaiilable: htttps://en.Wikiipedia.org/wiki/Second_m moment_of_arrea.[Accessed d13Novembeer2015].

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 65of202 [93] W Wikipedia,"Listtofareamom mentsofinertiia,"Wikipediaa, 29Septemb ber2015.[Onlline].Available: htttps://en.Wikiipedia.org/wiki/List_of_areea_moments_ _of_inertia.[A Accessed13N November201 15]. [94] en ngineeringtoo olbox,"Euler'sColumnForm mula,"enginee eringtoolbox,n.d..[Online]].Available: htttp://www.en ngineeringtoolbox.com/euleer‐column‐forrmula‐d_1813 3.html.[Accesssed13Novem mber 20015]. [95] NPTL,"SimpleB BendingTheoryORTheory ofFlexureforInitiallyStraightBeams,"N NPTL,n.d..[O Online]. Avvailable:http:://www.nptel.ac.in/coursess/Webcourse‐‐contents/IIT‐‐ RO OORKEE/stren ngth%20of%20materials/leects%20&%20picts/image/lect25%20andd%2026/lecture25%20 an nd%2026.htm m.[Accessed13November22015]. [96] th heconstructor,"THEORYOFFSIMPLEBEND DING,"thecon nstructor,201 14.[Online].A Available: htttp://theconsttructor.org/sttructural‐enggg/solid‐mechaanics/theory‐o of‐simple‐ben ding/3614/.[Accessed 133November2 2015]. [97] am mesweb,"COLLUMNBUCKLINGANDCOM MPRESSIONM MEMBERDESIG GN,"ameswebb,2013‐2015.[Online]. Avvailable:http:://www.amessweb.info/Com mpressionMemberDesign/C CompressionM MemberDesiggn.aspx. [A Accessed13November201 15]. [98] JaamesM.Gere,,Mechanicso ofMaterials,U UnitedStates:BillStenquistt[ISBN0‐534‐‐41793‐0],200 04. [99] B..Dupen,AppliedStrengtho ofMaterialsfoorEngineeringgTechnology,,IndianaUnivversity:Technologyand In nteriorDesignFaculty,2014 4. oymech,"BoltedJoint,"roymech,24Januuary2013.[O Online].Available: [100] ro htttp://www.royymech.co.uk//Useful_Tablees/Screws/Boltted_Joint.htm ml.[Accessed113Novemberr2015]. [101] ro oymech,"Failu ureTheories,""roymech,3SSeptember20 011.[Online].Available: htttp://www.royymech.co.uk//Useful_Tablees/Mechanics//stress.html.[Accessed13N November20 015]. [102] "FFailuretheoriees,"n.d..[Online].Availablee: htttp://www.en ngr.colostate.e edu/~dga/me ch325/hando outs/failure_th heories.pdf. [103] Drr.A.B.Zavatskky,"Mohr’sCiircleforPlaneeStress,"eng,n.d..[Online]].Available: htttp://www.en ng.ox.ac.uk/~kkneabz/teachiing/seh/Stresss6_ht08.pdf.[[Accessed13 November20 015]. [104] effunda,"Mohrcircle,"efund da,2015.[Onl ine].Available e: htttp://www.efu unda.com/forrmulae/solid__mechanics/m mat_mechanics/mohr_circlee.cfm.[Accesssed13 No ovember2015]. [105] FeerdinandP.Beeer,E.RussellJohnston,Jr.,,JohnT.DewolfandDavidF.Mazurek,m mechanicsofmaterials (sixthedition),NewYork:MccGraw‐Hill[IS BN978‐0‐07‐338028‐5],20 012. orceSystemResultants,"ituu,n.d..[Online].Available: [106] C..Üstünda,"Fo htttp://web.itu.edu.tr/~ustun nda1/course/SStaticsC04_05 5_22102013.p pdf.[Accessedd29October2 2015]. [107] R..C.Hibbler,StructuralAnalyysis[ISBN‐10: 0‐13‐257053‐X],unitedsta ates:Pearson PrenticeHall,,2012. [108] Jo ohnD.Holmess,WindLoadin ngofStructurres,Unitedstaates:AsponP Pressbook,20015. [109] RiichardG.BudyynasandJ.Ke eithNisbett,SShigley’sMech hanicalEngine eeringDesign (NinthEdition n),New Yo ork:McGraw‐Hill[ISBN978 8–0–07–3529228–8],2011. [110] Zaamil,"Zamilstteel,"Zamil,2 2015.[Online] .Available:htttp://www.zamil.com/.[Ac cessed6Dece ember 20015]. [111] po olsteel,"steelsections(UB)),"polsteel,n..d..[Online].A Available:http p://polsteel.coo.uk/steel‐guide/steel‐ seections/ub/.[A Accessed6De ecember20155]. [112] steelconstructio on,"Expresse edconnection s,"steelconsttruction,2015.[Online].Avaailable: on.info/Expresssed_connecttions.[Accesse ed4Novembeer2015]. htttp://www.steeelconstructio [113] heeatspring,"Ho owtoDesigna aSolarPVSysstem101:The eBasicTerms,"heatspring, 17April2012 2. [O Online].Availaable:https://b blog.heatsprinng.com/solar‐basics/.[Accessed25Noveember2015].

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 66of202 [114] ph hotovoltaic‐so oftware,"How wtocalculate theannualso olarenergyou utputofaphootovoltaicsysttem," ph hotovoltaic‐so oftware,2014 4.[Online].Avaailable:http:///photovoltaicc‐software.co m/PV‐solar‐energy‐ caalculation.php p.[Accessed16may2015]. [115] ReegionalEcono omicResearch h,"AGUIDETO OPHOTOVOLTTAIC(PV)SYST TEMDESIGNA ANDINSTALLA ATION," CaaliforniaEnerggyCommissio on,14June20014.[Online].Available: file:///C:/Userss/Ya7ya/Deskttop/poly/SEM M10/9‐9/2001‐‐09‐04_500‐01‐020%20very ry%20important.PDF. Accessed25November201 15]. [A [116] M M.andB.Lumb by,UtilitySca aleSolarPoweerPlants,New wDelhi:TheIn nternationalFFinanceCorpo oration (IFFC),2012. [117] Ireena,"Designo ofGridConne ectPVsystem,,"irena,12Ap pril 2014.[Online].Availablle: htttps://www.irrena.org/Docu umentDownlooads/events/2 2013/March/P Palau/3_Desiggn_of_Grid_Co onnect_P V..pdf.[Accesseed25Novemb ber2015]. [118] W Wikipedia,"GeographyofBa ahrain,"Wikippedia,15mayy2015.[Online].Available: https://en.W Wikipedia .o org/wiki/Geoggraphy_of_Bah hrain.[Accesssed3October2015]. [119] tin ndosolar,"tem mperaturecoe efficient,"tinddosolar,n.d..[Online].Avaiilable: htttp://www.tin ndosolar.com.au/temperatuure‐coefficien nt/.[Accessed 3October20015]. [120] diytrade,"tiptiiltdualaxisso olartracker,"ddiytrade,2015 5.[Online].Avvailable: hina/pd/114661160/5KW_tip_tilt_dual_a axis_solar_traccker_20P.htm ml. htttp://www.diyytrade.com/ch [A Accessed7October2015]. [121] zo oltenergy,"tecchnicalaspectts,"zoltenergyy,n.d..[Online].Available:http://faq.zo ltenergy.co/te echnical/. [A Accessed7October2015]. [122] N.W.Alnaser,R R.Flanaganan ndW.E.Alnaseer,"Potentialofmaking—O Overtosustai nablebuildinggsinthe hrain,"Sciencedirect,Manaama,2007. KingdomofBah Wikipedia,"SollarTracker,"W Wikipedia,233September2 2015.[Online].Available:htttps://en.Wikipedia [123] W .o org/wiki/Solar__tracker.[Acccessed7Octo ber2015]. [124] so olmetric,"roofazimuthtool,"solmetric,22015.[Online].Available: htttp://tools.sollmetric.com/T Tools/roofazim muthtool.[Accessed14Octtober2015]. [125] caarportstructurres,"solarsingglecolumnsinngle,"carportstructures,[O Online].Availaable: htttp://www.carportstructure es.com/solar‐‐single‐column n‐single.[Acce essed22Octoober2015]. [126] so olairegeneration,"Solaire360,"solairegeeneration,201 14.[Online].A Available: htttp://solairegeeneration.com m/.[Accessed 14October2 2015]. [127] freeemaptools,""Areacalculattor,"freemapttools,n.d..[O Online].Available: htttp://www.freeemaptools.co om/area‐calcuulator.htm.[A Accessed16O October2015].. [128] D..Thomas,"WhichSolarPan nelBrandIsB est?HowMuchShouldIExxpectToPay?,,"theecoexpe erts,3 Ju une201.[Online].Available e:http://www w.theecoexperrts.co.uk/whicch‐solar‐panells‐are‐best‐ho ow‐much‐ sh hould‐i‐expectt‐pay.[Accesssed17Octobeer2015]. [129] arrabsolarenerggy,"solarpane elscompaniess,"arabsolarenergy,n.d..[O Online].Availaable: htttp://www.araabsolarenergyy.com/2015/001/solar‐pane els‐companies‐2015.html.[A Accessed17O October 20015]. [130] Su untech,"solarrmodules,"on nustrade,n.d...[Online].Available:http:///onustrade.ccom/wp‐ co ontent/upload ds/2012/04/Suntech‐Pricel ist1.pdf.[Acce essed21Octo ober2015]. [131] freeecleansolar,"SunpowerSolarPanels,"ffreecleansolar,2015.[Online].Availablee: htttp://www.freeecleansolar.ccom/Sunpoweer‐Solar‐Panels‐ s//49.htm?searcching=Y&sort= =13&cat=49& &show=12&paage=1&search=%20cs5a.[A Accessed21October 20015].

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 67of202 [132] accosolar,"Canaadiansolarmo odule(model QuartechCS6 6V‐225M),"accosolar,2010..[Online].Ava ailable: htttp://www.acosolar.com/cssun‐csun270‐ 60m‐270w‐m mono‐silver‐fra ame‐solar‐pannel‐5666.[Acccessed5 Deecember2015 5]. [133] stellarsolar,"]X X‐SERIESSOLA ARPANELS,"SSunPower,2013.[Online].A Available: htttp://www.steellarsolar.net//downloads/SSPR‐x20‐250NE‐BLK.pdf.[Acccessed17Occtober2015]. [134] beestsolar,"CS5S/205M,"Can nadianSolar,22013.[Online].Available:h http://www.beestsolar.hu/files/CS5A‐ M M_en.pdf.[Acccessed17Octo ober2015]. [135] tu urnonthesun,"Suntechsola armodulePLU UTO200‐Ade,""SunTech,n.d d..[Online].Avvailable: htttp://www.turnonthesun.com.au/dealerrlogin/downlo oads/literature e/Suntech‐Pluuto‐195‐200.p pdf. [A Accessed17O October2015]. [136] su unpower,"con ntactsunpower,"sunpowe r,2015.[Online].Available: htttp://us.sunpo ower.com/com mpany/contacct‐sunpower//.[Accessed21October20115]. [137] CaanadianSolar,,"10ReasonssForChoosinggCanadianSo olar,"Canadian nSolar,2013.[Online].Ava ailable: htttps://www.keeen2bgreen.ccom.au/wp‐coontent/upload ds/2014/08/10‐Reasons‐Foor‐Choosing‐Ca anadian‐ So olar.pdf.[Acceessed21Octo ober2015]. [138] Ch hrisP.W.Geurts,CarineA.vanBentum,,"Windloadsonsolarenergyroofs,"herronjournal,20 007. [O Online].Availaable:http://he eronjournal.n l/52‐3/2.pdf.[Accessed19October20155]. [139] Am mericanSocieetyofCivilEnggineers(ASCE)),MinimumD DesignLoadsforBuildingsaandOtherStru uctures [ISSBN978‐0‐7844‐1085‐1],U UnitedStatesoofAmerica:A ASCEpublicatio ons‐onlinepeermission,2010. [140] m myweather2,"CountryOverviewForBahrrain,"myweatther2,n.d..[O Online].Availaable: htttp://www.myyweather2.co om/City‐Town//Bahrain/Bah hrain/climate‐profile.aspx?m month=1.[Acccessed27 October2015]. anicaldesignpprocess,"ucsd d,n.d..[Online].Available: [141] DaavidG.Ullman,"themecha htttp://maelabss.ucsd.edu/ma ae_guides/maachine_design n/machine_de esign_basics/FFactor‐of‐safe ety‐ Ullman.pdf.[Acccessed20Occtober2015]. Materials,SKM Mondal,2007 7. [142] S.K.Mondal’s,StrengthofM mplebending,""learneasy,n..d..[Online].A Available: [143] learneasy,"sim MDME/MEMm mods/MEM30 0006A/Bendin ng_Moment/BBending_Mom ment_files htttp://www.leaarneasy.info/M /ssimple‐bendin ng.png.[Accesssed2Novem ber2015]. [144] en ngineeringtoo olbox,"ASTMsteelbolts‐ pproofandtenssilestrength," engineeringttoolbox,n.d..[Online]. Avvailable:http:://www.engin neeringtoolboox.com/steel‐b bolts‐astm‐gra ades‐d_1427.hhtml.[Accesse ed13 No ovember2015]. [145] BaadriFKMUTM M,"BOLTAnalyysisandSelecction,"fkm,n..d..[Online].A Available: htttp://www.fkm m.utm.my/~arahim/bolt.[A Accessed13N November201 15]. [146] en ngineeringarchives,"Shearinbolts,"enggineeringarchiives,n.d..[Online].Availablle: htttp://www.en ngineeringarch hives.com/imgg/les_mom_singledoublesh hear_2.png.[A Accessed13 No ovember2015]. [147] Universityofth heWestofEnggland,Bristol,,"1Introductiion‐ Loadsan ndStresses,"uuwe,2008.[Online]. ection1.htm. [Accessed29October Avvailable:http:://fet.uwe.ac.uk/conweb/ccommercial/ironandsteel/se 20015]. [148] ASSK,"pierfoundationhome,,"ask,2015.[ Online].Available:http://w www.ask.com//home‐garden/pier‐ fo oundation‐hom me‐5b6fbe4b9 9bb04abc.[A Accessed2November2015]. [149] S.AliMirza,"Fo ootingDesign,,"uottawa,n..d..[Online].A Available: ~murat/CHAPPTER%205%20 0‐%20FOOTIN NGS%20‐%20SSP17%20‐%209‐07.pdf. htttp://by.geniee.uottawa.ca/~ [A Accessed1No ovember2015 5].

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 68of202 [150] FeederalEmergeencyManagem mentAgency (FEMA),"DessigningtheFo oundation,"FeederalEmerge ency M ManagementA Agency(FEMA A),n.d..[Onlinne].Available::http://www..fema.gov/meedia‐library‐ daata/20130726 6‐1510‐20490‐9375/fema555_volii_ch10rrev.pdf.[Accesssed3Novem mber2015]. [151] K..Jones,"DenssityofConcrette,"GlennEleert,2001.[Onlline].Available e: htttp://hypertexxtbook.com/facts/1999/Ka trinaJones.shtml.[Accessed2Novembeer2015]. [152] geeotechdata,"SSoilbearingca apacity,"geottechdata,15A April2015.[Online].Availabble: htttp://www.geeotechdata.inffo/parameter//bearing‐capaacity.html.[Acccessed1Novvember2015]. [153] BaahrainPolytecchnic,"Campu usmap,"BahrrainPolytechn nic,n.d..[Online].Availablee: htttp://www.po olytechnic.bh//about‐us/bahhrain‐polytech hnic‐life/camp pus‐map/.[Acccessed2Dece ember 20015]. [154] EW WA,"Tariffs& &servicesrate es,"mew,29A August2013.[Online].Available: htttp://www.meew.gov.bh/de efault.asp?act ion=category& &id=40.[Acce essed2Decem mber2015]. [155] grreentechmediia,"SolarInve erterCompaniiesto Watchin2015,"gree entechmedia, 2015.[Online e]. Avvailable:http:://www.green ntechmedia.coom/articles/re ead/6‐Solar‐In nverter‐Comppanies‐to‐Wattch‐in‐ 20015 .[Accesssed24Novem mber2015]. [156] pvveducation,"sshortcircuitcurrent,"pvedducation,n.d..[Online].Ava ailable: htttp://pveducaation.org/pvcd drom/solar‐ceell‐operation/sshort‐circuit‐ccurrent.[Acceessed24Nove ember 20015]. [157] en nphase,"Mod duleCompatib bility,"enphasse,2015.[Online].Available e:https://enpphase.com/en‐ uss/support/mo odule‐compatiibility.[Accesssed24Novem mber2015]. [158] m mc‐pv‐portal,"MC4connecttors,"mc‐pv‐pportal,n.d..[O Online].Available:http://ww ww.mc‐pv‐ po ortal.com/pagges/connectors/mc4.php?ppv=cr.[Accesssed24Novem mber2015]. [159] frd dsolar,"produ uctsdetail(PV V2b),"frdsola r,2015.[Onlin ne].Available: htttp://en.frdso olar.com/products_detail/& &productId=01 1570e3f‐457a‐43ec‐bc91‐0088866320c40 0.html. [A Accessed24November201 15]. [160] En nphase,"Enph hase®M215,"Enphase,20114.[Online].A Available: htttp://pdf.who olesalesolar.co om/inverter%220pdf%20fold der/M215‐IG‐data.pdf.[Acccessed24Novvember 20015]. [161] En nphase,"Enph haseM215withmc4andinntegratedgroundinverter,""Enphase,20015.[Online].A Available: htttp://www.wh holesalesolar.com/29775688/enphase/invverters/enpha ase‐m215‐witth‐mc4‐and‐ integrated‐grou und‐inverter.[Accessed25 November20 015]. nphase,"EnphaseM215M Microinverter (INSTALLATIO ONANDOPERA ATIONMANU UAL),"Enphasse,2015. [162] En [O Online].Availaable:http://pd df.wholesales olar.com/inve erter%20pdf% %20folder/M2215‐IG‐Installa ation‐ M Manual.pdf.[Accessed25No ovember20155]. [163] en nphase,"Prod ductsaccessorriescable(Droopconnecter)),"enphase,2014.[Online]..Available: htttps://enphase.com/sites/d default/files/pproducts_acce essories_cable e_960x600.pnng.[Accessed25 No ovember2015]. [164] reenvu,"ENPHASETRUNKCABLEForM2155,"renvu,201 15.[Online].Available: htttp://www.renvu.com/ENP PHASE‐TRUNKK‐CABLE‐For‐M M215‐ET10‐338‐pxl.png.[Acccessed25No ovember 20015]. [165] teechtarget,"voltage,"techta arget,n.d..[Onnline].Availab ble: htttp://whatis.teechtarget.com m/definition/vvoltage.[Acce essed24Nove ember2015]. [166] W Wikipedia,"Voltage,"Wikipe edia,2015.[O Online].Available:https://en.Wikipedia.oorg/wiki/Voltage. [A Accessed24November201 15]. [167] heeatspring,"Ho owtoDesigna aSolarPVSysstem101:The eBasicTerms,"heatspring, 2015.[Online e].

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page16 69of202 Avvailable:httpss://blog.heatsspring.com/soolar‐basics/.[A Accessed24N November20115]. [168] arrabsolarenerggy,"spacingso olarpanelsraw ws,"arabsolarrenergy,n.d..[Online].Avaailable: htttp://www.araabsolarenergyy.com/2015/004/spacing‐solar‐panels‐raw ws.html.[Acceessed17Octo ober 20015]. [169] R..Meck,"Calcu ulatingTiltedA ArraySpacingg,"affordablesolar,2012.[O Online].Availaable: htttp://www.afffordable‐solarr.com/Learninng‐Center/Buiilding‐a‐System m/Calculatingg‐Tilted‐Array‐‐Spacing. [A Accessed17O October2015]. [170] U.S.Departmen ntofCommerrce|National OceanicandAtmosphericAdministratioon,"NOAASo olar obalRadiation nGroup,n.d.. [Online].Avaailable: Caalculator,"Glo htttp://www.esrl.noaa.gov/gmd/grad/solccalc/.[Accesse ed17Octoberr2015]. [171] So olidworks,"Meshing,"Solid dworks,1995‐‐2015.[Online e].Available: htttp://help.soliidworks.com//2014/English//SolidWorks/cworks/c_Bacckground_on__Meshing.htm m?id=6a4 e443a7886f4530 09308678444c061ae.[Acceessed13Nove ember2015]. [172] "IntroductiontoFiniteEleme entAnalysis,"2008.[Online e].Available: es/MSE2094_N NoteBook/97ClassProj/num m/widas/histoory.html. htttp://www.sv.vt.edu/classe [173] co omsol,"Finerandcoarserm meshing,"com msol,n.d..[On nline].Available: htttps://cdn.com msol.com/wordpress/2013 /03/coarser‐aand‐finer‐messhes.png.[Acccessed2015N November 20015]. [174] Sw wagatam,"Ho owtoBuildYo ourOwnAutom maticSolarTrracker,"brightthub,27Aprill2014.[Online]. Avvailable:http:://www.brighthub.com/envvironment/re enewable‐energy/articles/776226.aspx.[A Accessed 7October2015 5]. eo‐dome,20007‐2014.[Online].Available:http://geo‐ [175] geeo‐dome,"sollarmirror,"ge do ome.co.uk/artticle.asp?unam me=solar_mirrror.[Accessed7October2 2015]. [176] th hesolarplanneer,"Photovolta aicTutorial:Sttep‐By‐StepG GuidetoGoing gSolar,"thesoolarplanner,2 2012‐ 20014.[Online].Available:htttp://www.theesolarplanner..com/steps_page8.html.[A Accessed29Se eptember 20015]. [177] en nergysolutions,"gridtie,"en nergysolutionns,n.d..[Onlin ne].Available: htttp://www.en nergysolutionss.us/sites/all/iimages/gridtie.png.[Accesssed29Septem mber2015]. [178] W WashingtonStaateUniversityyExtensionEnnergyProgram m,"SolarElectricSystemDeesign,Operatio onand In nstallation,"October2009.[Online].Avaiilable: nergy.wsu.edu u/documents//solarpvforbuildersoct2009 9.pdf.[Accesseed29September htttp://www.en 20015]. [179] zo oltenergy,"TeechnicalAspeccts,"zoltenerggy,n.d..[Onlin ne].Available:: htttp://faq.zolteenergy.co/technical/.[Acceessed25Nove ember2015]. [180] PaaulW.Stackho ouse,Jr.,Ph.D D,"NASASurfaacemeteorolo ogyandSolar Energy_RETSScreenData,""nasa,11 October2015.[Online].Avaiilable:https:///eosweb.larc..nasa.gov/cgi‐‐ =rets%40nrca n.gc.ca&step= =1&lat=26.166&lon=50.5477&submit=Submit. bin/sse/retscreeen.cgi?email= Accessed11O October2015]. [A [181] pvvsyst,"PVGISmeteorologicalData,"pvsyyst,n.d..[Online].Available e: htttp://files.pvsyyst.com/help//meteo_sourcce_pvgis.htm.[Accessed12 2October20115]. [182] M MikeBrackenridge,"SunPositionResultsfforBahrainIslland[BAH],Ba ahrain,"sunpoosition,2005‐‐2015. [O Online].Availaable:http://su unposition.infoo/sunposition n/spc/location ns.php#1.[Acccessed2015O October 20015]. [183] po olsteel,"steelfabrications((drilling),"pol steel,n.d..[O Online].Available: htttp://polsteel..co.uk/service es/steel‐fabriccations/drilling/.[Accessed17Novembeer2015].

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page17 70of202 [184] po olsteel,"steelfabrications((galvanising),""polsteel,n.d d..[Online].Avvailable: htttp://polsteel..co.uk/service es/steel‐fabriccations/coatin ng/galvanising g/.[Accessed117Novemberr2015]. [185] po olsteel,"steelfabrications((welding),"poolsteel,n.d..[O Online].Availa able: htttp://polsteel..co.uk/service es/steel‐fabriccations/weldin ng/.[Accessed d17Novembeer2015]. [186] ro oymechx,"Saw ws,"roymechxx,11Decembber 2007.[Online].Available e: htttp://roymech hx.co.uk/Useful_Tables/Maanufacturing/SSaws.html.[Accessed17Noovember2015]. [187] W Wikipedia,"Plaasmacutting,"Wikipedia,22015.[Online e].Available:h https://en.Wikkipedia .o org/wiki/Plasm ma_cutting.[A Accessed17N ovember201 15]. [188] tracemetalindu ustries,"Plasm maCutting,"trracemetalindu ustries,n.d..[O Online].Availaable: November20015]. htttp://www.traacemetalindusstries.com/higgh‐def.html.[[Accessed17N [189] learneasy,"beaambending,"learneasy,n.dd..[Online].A Available: MDME/iTesteer/get‐info/be eam‐bending.h html.[Accesseed13Novemb ber htttp://www.leaarneasy.info/M 20015]. [190] W Wikipedia,"Rigghthandrule,,"Wikipedia, 12November2015.[Onlin ne].Available::https://en.W Wikipedia .o org/wiki/Rightt‐hand_rule.[A Accessed15N November201 15]. [191] M M.A.Raoufand dM.Luomi,T TheGreenEcoonomyintheG Gulf,TheGulffresearchcenntre,2015. [192] "H Howdoescarb bondioxideca auseglobalw warming?,"31August1994. [Online].Avaailable: htttp://www.paa.msu.edu/scie encet/ask_st//083194.html. [193] sfflex,"CarportStructures,"ssflex,2015.[O Online].Available: oof‐structuress/s‐flex‐12‐kit##portrait.[Acccessed2 htttp://www.sflex.com/htdoccs/index.php//us/pitched‐ro October2015]. arports,"sola rpowerworldonline,8June e2014.[Onlin e].Available: [194] S.Bushong,"Trrends:SolarCa 14‐trends‐sola ar‐carports/.[A Accessed2October htttp://www.solarpowerworlldonline.com//2014/06/201 20015]. [195] rb bisolar,"solarcarport,"rbissolar,2015.[O Online].Availaable:http://ww ww.rbisolar.coom/solutions/solar‐ caarport/.[Accessed2Octobe er2015].

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page17 71of202

Appeendix(A)–A Averagesolarradiatio onpermontthfordifferrentazimutthandtilta angles Table77,average esolarradiationpermont hforazimuth h148.3degree esanddiffereenttiltangless[74] Solarirradiancefoorazimuth148 8.3°( / )permonthh‐Design2 Month M Tilt0° Tilt2.5° Tilt5° Tilt7.5° Tilt10°° Tilt111° Tilt2 26° January 112.84 115.94 119.04 122.14 124.93 3 126.117 139.19 February 127.12 129.64 132.44 134.68 137.2 138.004 147.28 March M 178.87 181.35 183.52 185.38 186.93 3 187.555 192.51 April A 194.4 195.3 196.2 196.8 197.1 197.44 193 3.5 May M 239.94 239.63 239.32 238.7 237.77 7 237.115 224.44 June J 245.1 244.2 242.7 241.2 239.4 238.88 221 1.1 July 239.32 238.7 238.08 236.84 235.6 234.998 220.41 August 220.72 221.34 221.65 221.96 221.65 5 221.665 214.21 September 194.1 196.5 198.3 200.1 201.6 201.99 204 4.3 Occtober 168.95 172.67 175.77 179.18 181.97 7 182.99 194.37 Novvember 116.7 119.7 122.7 125.4 128.1 1299 140 0.7 Deccember 109.12 112.53 115.94 119.35 122.45 5 123.669 138.88 Totalperyear 2147.18 2167.5 2185.66 2201.73 2214.7 7 2219.223 2230 0.89

Month M

Table78,average esolarradiationpermont hforazimuth h238.3degree esanddiffereenttiltangless[74] Solarirradiaanceforazimuth238.3°( / )permonth‐Design3(Singlesslope&doub bleslopewesttside)

January Feb bruary March M April A May M June J July J Au ugust Septtember Occtober Novvember Deccember Totalperyear

Month M

Tiltt41° 145.39 149.52 187.86 18 81.2 202.12 1 195 196.85 197.47 19 96.5 195.61 14 45.2 146.63 213 39.35

Tilt0° 112.84 127.12 178.87 194.4 239.94 245.1 239.32 220.72 194.1 168.95 116.7 109.12 2147.18

Tilt2.5° 114.7 128.8 180.11 195 239.63 244.5 239.01 221.03 195.6 171.12 118.5 111.29 2159.29

Tilt5° 116.56 130.2 181.35 195.3 239.32 243.3 238.39 221.03 196.5 172.98 120.3 113.46 2168.69

Tilt7.5°° 118.42 131.6 182.59 195.6 238.7 242.1 237.46 221.03 197.4 175.15 121.8 115.32 2177.17 7

Tilt10 0° 120.28 133 183.52 195.6 6 237.46 240.6 6 236.22 220.41 198 176.7 7 123.3 3 117.18 2182.2 27

Tilt111° 120..9 133.556 183.883 195..3 237.115 2400 235..6 220..1 198..3 177.001 123..9 117..8 2183..45

Tilt26° 127 7.41 137 7.76 184 4.45 190 0.5 225 5.99 225 5.6 223 3.2 212 2.66 196 6.8 181 1.97 129 9.6 125 5.55 2161.49

Tilt41° 12 28.34 13 36.08 17 77.94 17 78.5 20 07.08 2 204 20 03.36 19 97.47 18 87.5 17 78.87 12 29.6 12 27.72 205 56.46

Tab ble79,averaggesolarradiattionpermontthforazimuth h58.3degree esanddiffere nttiltangles[74] Solarirrad dianceforazim muth58.3°( / )permonth‐Design3(doubleeslope)–arrraystowardeast

January Feb bruary March M April A May M June J July J Au ugust Septtember Occtober Novvember Deccember Totalperyear

Tilt0° 112.84 127.12 178.87 194.4 239.94 245.1 239.32 220.72 194.1 168.95 116.7 109.12 2147.18

Tilt2.5° 110.67 125.16 177.32 193.5 239.63 245.4 239.32 219.79 192.6 166.47 114.6 106.64 2131.1

Tilt5° 108.5 123.2 175.46 192.3 239.32 245.1 239.01 218.86 190.8 163.99 112.5 104.47 2113.51

Tilt7.5°° 106.02 121.24 173.29 191.1 238.39 244.8 238.7 217.62 188.7 161.2 110.4 101.99 2093.45 5

Tilt10° 103.85 5 119 171.12 2 189.6 237.15 5 244.2 237.77 7 216.38 8 186.3 158.41 1 108.3 99.51 2071.59

Tilt111° 102.992 118.116 170.119 188. 7 236.884 243. 9 237.115 215.776 185.44 157.117 107. 1 98.5 8 2061. 87

Tilt2 26° 89.28 104.72 154.69 175 5.2 223.51 232 2.2 225.37 201 1.5 16 68 138.57 93.6 84.32 1890 0.96

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Tiltt41° 76 6.26 9 91 13 36.4 15 56.6 202.12 21 11.2 20 04.6 180 0.42 14 47.3 119 9.35 8 81 71 1.61 167 77.86

Page17 72of202

Appendix(B)–Electricaaltermsand dmodulesarrangemeent Thetabllebelowdefinessomeoffelectricalteermsthatwe ereusedinthisdocumennt: Table80,som meofbasicelectricaltermss

Current Voltage DCCurrent

ACCurrent

Theflow wofnegative elychargedeelectronsthroughaconductor(wire)..Currentisrrepresentedby thesymb bol(I);theSIIunitofcurrrentisamperre(A)oramp p.[165] Themeaasureoftheforceorpreessureoftheelectriccurrentinacirccuit;Itismeasuredinvo olts (V).The voltagemakkescurrentooccurwheretheremustbeadifferenncebetween nthesource of anexist.[1666] power’svoltageand theload’svvoltagesothaatcurrentca DC is a short for diirect currentt; in this typ pe of electriicity the currrent and vo oltage remaiins Thecurrent producedbyyphotovoltaicmodulesissdirectcurrent.[167] constanttovertime.T AC is a short for alternating a ccurrent; in this type of electricity voltage an nd current are a constanttly altering between b po sitive and negative (the e picture bellow shows the t alternatiing direction n of currentt flow). The AC electricity is the tyype of electrricity used by b homes and businessses.[167]

Figure172 2,Directcurreent(DC)anda alternatingcu urrent(AC)[2 9]

Modulesarrangeme ent:  Serriesconnectiion(seriessttring): The cables of modules m sho ould be connnected in a waythatwoulddeliverthedesiredvoltageaandcurrent values that the systtem needs. The T figure o n right side shows an examplee of a series connectiion of five moduless; in this co onfiguration the positivee wire from one module is conn nected to th he negative wire of the ate a seriess string of next module leadiing to crea moduless. When thee modules are a connecteed in series the voltage values are a additive and the currrent values remaintthesame.[29] For example, if the voltage e (V) and cuurrent (I) of oduleis12(vvolts)and4((amps)respeectively;the eachmo total vo oltage is equal to [12 (volts per m module) ×5 (numberofmodulessinseries)= =60(volts)]. Thepower Figure e173, FivePV Vmodulescon nnected inserries P=V×I=60×4= =240W].[29]] outputisequalto[P  Parrallelconnecction: The number of modules th hat can be cconnected in n series is limited; in orrder to increase the s should be conneected paralle el to each otther. In paraallel connection, the system power the strings positive wire from one module e is connectted to the positive wire of the neext module, and the oeachother..Ifthemodu ulesareplaccedinparalleel;thecurren ntvalues negativeewiresarecconnectedto

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page17 73of202 areaddiitiveandtheevoltagevalu uesremains constant.Fiigure174 showsagroupoffivvemodulesconnectedin parallel.[29 9] Forexample,iftthevoltage(V)andcurreent(I)ofeach hmodule is12voltsand4am mpsrespectivvely;thetot alcurrentisequalto [4 (amp ps per stringg) ×5 (numb ber of mod ules in paraallel) =20 amps].TThepowero outputisequ ualto[P=V×I==12×2=240W W]which isthesaamepowero outputofthe eseriesconn ection.[29] Figurre174, FivePV Vmodulesco onnectedinpaarallel

Serries‐parallelconnection: Mosstphotovoltaaicsolarsystemsuseaccombination nofseries and paarallel conn nected arra ays. Figurre 175 sh hows the arrangem mentofSeries‐parallelconnectionw wherethemo odulesare connected in series to increase the voltagee, then the two t series stringsaareconnecteedinparallelintoincreassetheoutpu utcurrent. [29] The total voltagge produced d per string is equal to o 12 V 5 numb ber of modu ules in seriess 60 voltts. The totaal current (I)fortw wostringsisequalto 2 number of sstrings in paarallel 4 ampss per string 8 amps. The poweer output is equal to P V I 60 8 480 W W.[29] Figurre175, PVmo odulesconnecctedinaserie es‐parallelcon nfiguration

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page17 74of202

Appendix (C)–Shadinganalysis Thissisanextrassection(men ntionedinprrojectplan);shadingisnotafactorfforthisproje ectbased nineachrow wandthetilttangleis onthesselecteddesign(thearrayysaremounntedinoppossitedirection very sm mall). The shaading distance will be c alculated in order to ge et an idea w what is the minimum m possiblee distance beetween the rows; this vvalue would d be very useful if we nneed to increase the coveredareaoftheparks,orifw wedecidedttochangethe edesign.[16 68] Shad dingistheeenemyforso olarmoduless;shadinga smallcornerofamodu lecanreduccepower production to the half. h Avoiding shade on the array iss important; it can be ann issue for the t solar he road wid dth is small and the mo odules tilt angle is big, or if the arrrays are parking system if th d laterally. In this sectio on, the shadding effect will w be analyyzed and thee minimum required installed distancee between the t parking rows will bbe calculated and comp pared with the actual available distanceebetween th herows.To findthemi nimum spaccing distance e betweenthheparking rows;the calculatiions should be based on o the worrst condition n during wh hole year. TThe maximum m shade sst distancee produced by solar mo odule occurrs during wiinter specifically on 21 Decemberr (winter solstice))becauseat thistimeth hesunislow winthesky (duetomotionofthee artharoundsun).As explaineed before, the t angle be etween the horizon an nd height off the sun iss called the altitude angle α , and durin ng calculatin ng the spacinng distance the t minimum m solar altit ude angle should be selected d(variesthro oughoutthe day).Thepiictureblowsshowstwom moduleslocaatedawayfrromeach otherbyyadistanceD,andtiltedwithananggle θ;thetottallengthofthemodulessisXandthe evertical heighto ofthearrayissh.[169] Figure176,twomodulessinstalledaw wayfromeach other[169]

The sunmoves fromeastto owest(15°pperhour);th heazimutha angle( )is usedtodesccribethe sunposiitioninrelationtonorth..Boththeazzimuthangle eandaltitude eanglevary throughouttheday. Figure17 77,azimuthandaltitudeanngleduringda ayhours(Bah hrain– Winterrsolstice)

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page17 75of202 Pictu ure 177 is obtained o from an onlinee calculator; it shows th he change inn azimuth angle and st altitude anglethrou ughtheday((fromsunris etosunset)at21 Deccemberand forBahrain location. Asshow wnonthispicctureandatazimuth1800thealtitude eisapproxim matelyequalto41degre eeswhich isequal tothealtitu udecalculate edinpreviouuschapter2(forwinterssolstice).To designasystemthat mto2pm;theminimum maltitudean ngleshoulda at9amor22pm(botha angleare canworrkfrom9am equal).[[169] Find ding the min nimum tilt angle with azzimuth angle can be ussed to find tthe distance e D (the inclined shadedistance)andthe enfindingthheminimum spacingdisttanceD(assshownonthepicture hesystemisdesignedto operatefrom9amor2pm;theazim muthanglea at9amis below). Assumingth mately138d degreesandthealtitude isapproximately28degrees(seepiccture177). approxim

Figgure178,thedistance

aandtheminim mumspacingd distanceD[1668]

For moreaccuraateresultso onemoreon linecalculattorisusedca alled“NOAA ASolarCalcu ulator”as below: shownb Figure179,N NOAASolarCa alculator[170]

owtousethiiscalculator;;assumingth hesystemisdesignedto ooperate Thefollowingstepsshowho urs: 6hoursduringpeaksunlighthou dcitiesoption.(1) 1. Selectworld map;thetimeezoneshouldbethe 2. Selectthecllosetlocationtoyourareeathroughcclickingonm equaltheBaahraintimezzone(GMT++3).(2)

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page17 76of202 3. Theboxsho owsthesolarnoontime;;(maximum sunlight);w wherethesysstemshould doperate betweenthiistime.From mthepictureeitis11.51am.(3) 4. Thesystem shouldbed designedbassedonanan nglebeforeo orafterthreeehoursoftthesolar 1am).Before ethreehourssfromsolarnoon(11.51am);filltheelocalzonettimewith noon(11.51 8.51amassshowninstep4. muthandaltittudeanglesd duringpeak conditions.[[168] 5. Instep5,recordthecalcculatedazim m this calcu ulator the va alues of azim muth angle and altitude e angle are 134.25° and 25.14° From respectively.Tofindthespacingdistanceba sicmathnee edtobeapplied. Table82,Total areacovered dbythemodu ules

Givens Westarrayystiltangle 11 °(westparks)

Dista ancebetweeentwowestarrays Ro oadwidth+e eastparklenngth–arrayllength=(6++5)– (4.974coss11)=6.12m Min nimumaltitud deangle25.14° Azimutha ngle134.25°° The elengthofthhetiltedarraay(X)=4.974 m

Figure180,Parking areasideview wwithouteasstparks

From mpicture180,176and1 178wecanfiindh, D and d D Theverticalheigghtofthearrrayishiseq ualto(witho outtheheigh htofthestruucture):(pictture180) h 974 4.9

h

X

siin θ

sin 11 1

0.949

Theinclinedshadedistance(D )isequallto:(picture176) D D

tan n

0.949 tan 25.14

2.02

pacingdistan nceDisequaalto:(picture e178) Theminimumsp D D

2.02

D

cos 180 1

ccos 180

134.25 1

1..41

ancebetweeenthetworo owsis1.41m meter;sincettheactualdiistanceis Theminimumreequireddista nthissolarpparkingsyste em. 6.12meeterforcurreentdesign.Therefore,theeshadewillnoteffecton

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page17 77of202

App pendix(D)– –Finiteelem mentanalyssis(Solidwo orkssimulattion) A reeliable numeerical technique can be used for stu udying and analyzing enngineering designs d is called Finite Elemen nt Analysis (FEA). The p rocess starts with activa ating (FEA) ooption in So olidworks olidworks(FEA)subdividdesthedesirredmodelin ntosmallpieecesofsimpleshapes (simulattion);thenSo calledellementsconnectedatco ommonpoin tscallednod des.Solidworks(FEA)loooksatthemodelasa networkk of separatte interconnected elemeents, and predicts the behavior off the model through combining the inforrmation obta ained from aall elementss making up the model (mesh “which is the ofnodesan ndelements” ”).Meshing isveryimpo ortantstepduringdesignnanalysis;So olidworks number obalelementtsize,tolera ance,and (FEA)geeneratesmesshautomaticcallywithasspecificsizebasedonglo local meesh control specification ns. Meshing control opttion lets the e designer seelect the sizze of the mesh w where a smaller mesh prrovides moree accurate results, r and larger meshh makes the e analysis faster. [171] Finite element e ana alysis has maany benefitss where it asssists in findding the stre esses and strainacctingonthedesignanda alsothedisp lacement,itprovidesfurrtherstudiesssuchas,fattigueand vibration nanditgeneratescharttsandtablessthatshowssthestressd distribution. Themainb benefitof (FEA) heelping in find ding the weakness pointts (points exxpose to stress concentrration) in th he design beforem manufacturin ng,andhenccethedesignncanbemod difiedtomee ettherequir ements.[172]

Figure181,Finerandcoarrsermeshing((thesmallerismoreaccuraate)[173]

Stepsfo orfiniteelem mentanalysiss: Inordertoanallyzethetota alstressesthhatactonth hecompone entsofthesstructureina acorrect utanyerror;;thissection nshowshow wtodoastrressanalysisinsolid‐ way(correctsimulation)withou works:

Selectingtypeofstudy: ep Solidwoorks simulattion should d be  Before doing this ste activated.  Clickonaneewstudy(1)..  Thenselectstatic(2). orallcomponnents(purlin n,crossbeam mand  Repeatthessamestepfo column) Figuree182,selectin ngtypeofstu udy  Applyingaspecialmaterialtothestruccturecompo onents:

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page17 78of202

F Figure183,se lectingthem aterialforpu urlin,crossbea amandcolum mn

r ma aterial (2), aand finally apply the Click on apply materiall (1) then c hoose the required window(3). changestheenclosethew pecial materrial was dessigned (calle ed Al‐Zamil steel) to match the  Note, in this step a sp nthecataloggue. propertiesin w material yyou should click c on custtom materiaal, then rightt click on  In order to create a new wmaterialo option),then specifythepropertiesin nthetableoontherightssidewith (selectanew clickingonsaveandfina allyclickonaapply. nvertingthe epartsfromsolidtobea m:  Con Thissisthemosttimportant step;thepuurposeofthiisstepiscre eatingjoints inthebeam m.These jointscaanbeusedttoapplyforcce,moment, oraddafixxture.Dueto othenatureeoftheappliedload, two cro ossbeams weere assembled togetherr with a totaal length eq qual to the length of th he actual crossbeaam;thepurp poseofassemblingtwo crossbeams istocreateajointinthhemiddle,an ndhence applyinggtheresultantforceinth hemiddle;thhesamethin ngwasrepea atedforpurliin.  Toconvertssolidparttobeamrightcclickonallth hepart(1)thenselecttreeatasabeam m(2).

Figure184, convertingpa artstobeam

Creeatingjoints:

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page17 79of202

Figuree185,creatinggjoints

Rightclicko onjointgrou upoption(1))clickonedit(2),chooseselectoptiion(3),selectallthe beams(two o purlinsorttwocrossbeaamsortheccolumn) (4) andfinally, clickoncalcculate.In the purlin and a crossbea am three jooints will be created; in n the colum n two jointss will be created.Theepurplejointspherereppresentstheconnectionb betweentheetwobeams,andthe olivecolorjo ointmeansthereisnocoonnectionto oanyotherb beam. Add dingfixturess:

Figurre186,usingoolivejointsassfixturesforp purlin

Clickonfixtureadvisor (1)then chooosefixedgeometry(2);then selectt the twoolivecolor dbeam)anddapplythecchanges(3). Forcolumnnandcrossbeamone joints(simplysupported olivecolorjointshould beselected;;thefollowingisexampleforthecrrossbeamfixxtureand ure: columnfixtu

Figure187,usingoneolivvejointasaffixtureforcro ossbeam(canttileverbeam))andcolumn

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 80of202 

Creeatinganincclinedreferenceplane: Thetiltedplanewillbeu usedtoapplyyaninclined dforce;tocre eateaplaneintheassem mbly:  Clickonassembly(1),clickonreferrencegeome etry(2),sele ectplane(3),,selectane edgethat willbeparalleltothedesireddirecttionofthep plane(force))(4),selectaafacethatttheforce willbeappliedonit(4)ffinallyselect thedesiredtiltoftheplaneandappplythechangges(5).

3

Figure1888,stepsforcreatingplanein

Figgure189,A)in nclinedplane forcrossbeam mB)inclinedplaneforpurrlin.

nt: Applyingforceandmomen orceactingon npurlin: A. Resultantfo

Figu ure190,resulltantforceacttingonthepu urlin

Click on extternal force (1), choose force (2), select s the jo oint symbol and then se elect the purplejoint (3),selecttthenewplanne(inclined plane)(4)andfinallyseelectthedire ectionof ndputthem magnitudeof theforce(theforcedire ectionwillapppear)anda applythe theforcean changesand druntheana alysis(5).

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 81of202 B. Resultantfo orceactingon ncrossbeam m:

Fiigure191,ressultantforcea actingonthecrossbeam

Clickkonexternaalforce(1),cchooseforcee(2),select thejointsym mbolandthhenselectth hepurple joint(3),,selectthen newplane(inclinedplan e)(4)andfin nallyselectthedirectionnoftheforce eandput the maggnitude of the force (th he force direection will appear) a and apply the cchanges (5). Run the analysis. C. Forceandm momentactin ngonthecollumn:

Figuree192,rightha andrule [190]]

Figure193,foorceandmom mentactingoncolumn

Clickk on externaal force (1), choose forcce (2), selectt the joint syymbol and tthen select the t olive colorjoiint(3),selecttmidplane((inthemidd leofthecolu umn)(4)sele ectthedirecctionofthefforceand ectionof putthe magnitude oftheforce (theforceddirectionwillappear)(5),selecttheedesireddire hemagnitudeeofthemom ment(themomentdirecctionwillapp pear)and momentt(anticlockwise)andth applyth hechanges(6).Runthe analysis.As shownontheabovepiccture,them momentsymb bollooks likeanaail;thissymb bolisbasedonrighthanndrule.Base edonthedirectionoftheenailandrigghthand rulethe momentis anticlockwise;toclarify,therighthaandthumbpointstowarddnailtip,fin ngerscurl indirecttionofmomeent. Notee:thestepsforpurlinan nalysisarecoorrect(butIchangedthe eanalysis);inntheresultssectionI analyzed d the purlin as a solid (not a beam m) in order to find the von missess stress. Also I used distributtedloadinstteadofpointtload,andallltheremain ningstepsare ethesame.

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 82of202

App pendix(E)––Solarmod dulesdatash heet 

Mo odule1:Qu uartechCS6V V‐225M(Cannadian)data

Figure194 4,moduleQuuartechCS6V‐‐225M(Canad dian) [134]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 83of202 

Mo odule1:QuaartechCS6V‐‐225M(Canaadian)datassheet–conttinue

Figgure195,moduleQuartecchCS6V‐225M M(Canadian) – continue [1334]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 84of202 

Mo odule2:PLU UTO200‐Ade(Suntech)‐ datasheet

Figure e196,Modulee2:PLUTO20 00‐Ade‐ datasheet [135]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 85of202 

Mo odule2:PLU UTO200‐Ade‐datasheett(Suntech)‐‐continue

Figure197,,Module2:PPLUTO200‐Ad de‐ datasheet ‐ continue [135]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 86of202 

Mo odule3:X20 0‐250‐BLK(Sunpower)‐ddatasheet‐ datasheet

F Figure198,X2 20‐250‐BLK(SSunpower)‐ datasheet‐ da atasheet [1333]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 87of202 

Mo odule3:X20 0‐250‐BLK(Sunpower)‐ddatasheet‐ continue

Figure199,X X20‐250‐BLK(SSunpower)‐ datasheet‐ d continue [133]]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 88of202

App pendix(F)––Microinve erterdatash heet 

Enp phaseM215 5microinverrtersspecificcationssheett:

Figure200,EnphaseM215m microinverte ersspecificatio onssheet [1660]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page18 89of202 

Enp phaseM215 5microinverrtersspecificcationssheett‐continue

Figure201,EnphaseM215m microinverte ersspecificatio onssheet [1660]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Page190of20 02

Appendix(G)‐‐EngineeringDrrawingsfortheparkingstructurreComponents

Figure202,Nutandwasher(M M20)drawing

Page191of20 02

Figure203,Nutandwasher(M M12)drawing

Page192of20 02

Figgure204,nutdraw wing

Page193of20 02

Figure205,Columndra awing

Page194of20 02

Figure20 06,crossbeam(tilt5 5)drawing

Page195of20 02

Figure207 7,crossbeam(tilt1 11)drawing

Page196of20 02

Figu ure208,footingdra awing

Page197of20 02

Figu ure209,purlindraw wing

Page198of20 02

Figu ure210,sheet1dra awing

Page199of20 02

Figu ure211,sheet2dra awing

Page200of20 02

Figu ure212,sheet3dra awing

Page201of20 02

Figure213,C Canadiansolarmoduledrawing

Page20 02of202

Append dix(H)‐IRCCstandardffootingdim mensions FFigure214,selectingthesta andarddimennsionsforthe efootingacco ordingtoIRCsstandard.[173]

PhotovvoltaicSolarParkingSysttemstudy,annalysisandimplementationforBahraainPolytechnic

Photovoltaic Solar Parking System Study, Analysis and Implementation for Bahrain Polytechnic - PDFCOFFEE.COM (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Jamar Nader

Last Updated:

Views: 5706

Rating: 4.4 / 5 (55 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Jamar Nader

Birthday: 1995-02-28

Address: Apt. 536 6162 Reichel Greens, Port Zackaryside, CT 22682-9804

Phone: +9958384818317

Job: IT Representative

Hobby: Scrapbooking, Hiking, Hunting, Kite flying, Blacksmithing, Video gaming, Foraging

Introduction: My name is Jamar Nader, I am a fine, shiny, colorful, bright, nice, perfect, curious person who loves writing and wants to share my knowledge and understanding with you.